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Abstract

Federated learning (FL) enables collaborative learning across clients without com-1

promising privacy. Most existing FL studies focus on model-homogeneous scenar-2

ios. However, ensuring uniform model architecture across clients is challenging,3

leading to a model-heterogeneous FL problem. To address this problem, we rethink4

client knowledge and design a novel form termed the entangled representation,5

which entangles all representations from distinct categories on each client into6

a single representation. Building on this concept, we propose a Federated Rep-7

resentation Entanglement (FedRE), which first synthesizes a single entangled8

representation on each client and then uploads it to the server to train the global9

classifier. Each entangled representation integrates information from distinct cat-10

egories and is categorized into multiple categories according to their respective11

contributions, enabling the global classifier to learn a decision boundary that cap-12

tures inter-category relationships. As a result, the entangled representations offer13

effective, privacy-preserving, and lightweight client knowledge. Theoretically, we14

analyze the convergence of FedRE, and empirically, we demonstrate its superiority15

in balancing model performance, privacy protection, and communication overhead.16

The codes are available at https://anonymous.4open.science/r/FedREx.17

1 Introduction18

Federated learning (FL) [26, 43] is a collaborative learning paradigm that aggregates privacy-19

preserving client knowledge (e.g., model parameters) from multiple clients. Numerous FL methods20

have been developed and applied in various fields, such as healthcare [1, 48] and the Internet of21

Things [27, 7]. Most existing FL studies [26, 52, 24, 20, 4, 3, 49] assume that the architectures22

of local models across clients are homogeneous. In practice, however, assuming the same model23

architecture for all clients is unrealistic due to differences in sample distribution, hardware, and24

computational capabilities. Also, the model architecture adopted by each client is private and may not25

be shared with the server or other clients. Those issues motivate a practical but challenging problem26

known as model-heterogeneous FL [44], where the representation extractors adopt heterogeneous27

architectures across clients, while the classifiers share a homogeneous architecture.28

To address this problem, various model-heterogeneous FL methods[18, 12, 25, 36, 22, 45, 11, 39,29

46, 41] have been proposed. Most of them focus on aggregating the representations [25], logits [12],30

small-models [46, 41], classifiers [22], or prototypes (i.e., category means) [36, 45, 11, 39], from31

clients. On the one hand, although representations, logits, and small-models encode high-level client32

knowledge, uploading them to the server incurs significant communication overhead and exposes a33

serious privacy risk, as they can be exploited to infer the original samples by launching representation34

and model inversion attacks [37, 47]. On the other hand, uploading classifiers and prototypes that35

encapsulate category-specific knowledge to the server reduces both communication overhead and36
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the risk of inferring original samples. However, they may fail to model inter-category relationships,37

leading to suboptimal model performance. This raises a question: “For model-heterogeneous FL, is38

there more effective, privacy-preserving, and lightweight client knowledge available?”39

To find a potential solution, we observe that prototypes effectively reduce communication overhead40

and privacy risks. However, prototypes aggregate same-category representations into a single repre-41

sentation, failing to capture inter-category relationships. This inspires us to entangle representations42

from distinct categories on each client into a single representation to alleviate this issue. Unlike43

prototypes, the entangled representation integrates knowledge from multiple categories with varying44

contributions. Building on this concept, we propose a Federated Representation Entanglement (Fe-45

dRE). In FedRE, each client first entangles all representations from distinct categories into a single46

representation and then uploads it to the server for training the global classifier. During training,47

each entangled representation is simultaneously classified into multiple categories based on the corre-48

sponding category weights, enabling the global classifier to learn a decision boundary that effectively49

captures the relationships of different categories. Furthermore, the entangled representations can50

effectively resist representation inversion attacks, as they do not correspond to any single sample, and51

significantly reduce communication overhead by uploading only a single representation per client.52

As a result, those entangled representations provide privacy-preserving, lightweight, and effective53

client knowledge.54

The main contributions of this paper are three-fold. (1) To the best of our knowledge, we are the first55

to utilize the entangled representation as client knowledge to train the global classifier. (2) We propose56

FedRE based on the entangled representation and analyze its theoretical convergence. (3) Extensive57

experimental results on three benchmark datasets verify the superiority of FedRE in balancing model58

performance, privacy protection, and communication overhead compared to state-of-the-art methods.59

2 Related Work60

Existing FL methods can be roughly categorized into model-heterogeneous and model-homogeneous61

approaches based on their ability to handle model heterogeneity.62

Model-heterogeneous FL approach handles both heterogeneous local models and sample distribu-63

tions. Due to the heterogeneity of local models, it is not feasible to aggregate all their parameters.64

Thus, most of the studies turns to aggregate client knowledge (e.g., representations [25], logits [12],65

small-models [46, 41], classifiers [22], or prototypes [36, 45, 11, 39]). For example, DS-FL [12]66

designs a logit aggregation strategy that integrates the local logits from different clients into the67

global logit on the server. FedHeNN [25] aligns the representations extracted by distinct local models68

using a common representation alignment dataset. LG-FedAvg [22] aggregates the classifiers from69

distinct clients on the server. FedProto [36], FPL [11], FedGH [45], and FedTGP [53] treat prototypes70

as a form of client knowledge. Specifically, FedProto [36] averages the local prototypes of each71

category to aid in learning local representation extractors. FPL employs a clustering strategy to72

derive unbiased global prototypes, and FedTGP optimizes trainable global prototypes dynamically.73

Moreover, FedGH [45] utilizes the prototypes from multiple clients to train the global classifier on the74

server. Additionally, several studies [55, 42] focus on knowledge distillation. For instance, FedGen75

[55] learns a global generator to augment the training samples for local models, while FedKD [42]76

distills a global student model to assist the learning of local models. Furthermore, another line of77

research [41, 46] uses homogeneous small-models as client knowledge. A recent example is FedMRL78

[46], which facilitates inter-client knowledge aggregation via a shared small-model.79

Model-homogeneous FL approach deals with homogeneous local models but heterogeneous sample80

distributions. Most of the studies [26, 52, 24, 20, 4, 3, 40] focus on aggregating all parameters of81

local models. For instance, FedAvg [26] aggregates all parameters of local models from distinct82

clients on the server. Based on FedAvg, FedAvgDBE [51], FedFN [14], and FedDecorr [33] alleviates83

the representation bias issue in local models. Another example is FedALA [52], which adaptively84

integrates the global and local models to align with the local objective. In addition, several studies [34,85

2, 28, 29] aim to aggregate partial parameters of local models. For example, FedRep [2] aggregates the86

representation extractors of local models to enhance representation capability. Moreover, FedBABU87

[28], SphereFed [6], FedETF [21], and FedDr+ [13] only updates the representation extractors during88

local training and then aggregates them on the server.89
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3 Problem Formulations90

Model-heterogeneous FL. Following [36, 45], in the model-heterogeneous FL problem, we are91

given K clients and a server. Let Dk = {(xk
i ,y

k
i )}

nk
i=1 be a private local dataset in the k-th client,92

where xk
i represents the i-th sample in Dk, and yk

i denotes its associated one-hot label over C93

categories. Moreover, let hk(θk; ·) = gk(ϕk; ·) ◦ fk(ωk; ·) denote the local model with parameters94

θk = {ϕk,ωk} in the k-th client, where gk(ϕk; ·) represents the representation extractor with95

parameters ϕk, and fk(ωk; ·) denotes the local classifier with parameters ωk. There exist distinct96

clients i and j such that gi(ϕi; ·) and gj(ϕj ; ·) have heterogeneous architectures, while fi(ωi; ·) and97

fj(ωj ; ·) maintain a homogeneous architecture across all clients. The goal is to learn a model using98

{Dk}Kk=1 to achieve optimal average classification accuracy across all clients.99

Threat Model. We assume the server is semi-honest: It follows the protocols honestly but is curious100

to infer original samples from the representations by launching a representation inversion attack [37].101

Furthermore, we assume the server can illegally access the representation extractors of clients.102

4 Methodology103

4.1 Motivation104

In the model-heterogeneous FL problem, the global classifier often struggles to be effectively trained105

due to the heterogeneity of both local models and sample distributions across clients. To address106

this challenge, a promising solution is to aggregate client knowledge to train a high-quality global107

classifier on the server, which is then deployed to clients to replace their local classifiers. A vanilla108

approach, FedAllRep, uploads all sample representations to the server as client knowledge for109

training the global classifier (as illustrated in the left of Figure 1). While FedAllRep achieves superior110

model performance, it poses significant risks of leaking original samples through representation111

inversion attacks [37] and incurs substantial communication overhead. To alleviate this issue, FedGH112

[45] uses prototypes as client knowledge to train the global classifier, enhancing privacy protection113

and reducing communication overhead (as illustrated in the middle of Figure 1). However, those114

prototypes only encode the representative knowledge of their respective categories, failing to model115

inter-category relationships, resulting in suboptimal model performance.116

To mitigate this drawback, we observe that prototypes are constructed solely from same-category117

representations, which limits their ability to capture inter-category relationships. This observation118

motivates the design of entangled representation—a novel form of client knowledge that entangles119

representations from different categories (as illustrated in the right of Figure 1)—thereby incorporating120

multi-category information and capturing inter-category dependencies. Specifically, we first entangle121

all representations from distinct categories on each client into a single representation, where each122

Representations Entangled RepresentationsPrototypes

Client 1

Server

Client K Client 1

Server

Client K

… …

FedAllRep FedRE
Client 1

Server

Client K

…

FedGH

Figure 1: Illustrations of FedAllRep, FedGH, and FedRE. Here, different shapes represent distinct
categories, dotted shapes indicate the absence of uploads, solid arrows (→) point to reconstructed
images obtained via a representation inversion attack, and dashed arrows (99K) indicate the direction
in which representations are pulled toward different categories. In FedAllRep, vanilla representations
are uploaded, ensuring model performance but increasing communication overhead and privacy risks.
In FedGH, prototypes are uploaded, reducing communication overhead and privacy risks, while
lowering model performance. In FedRE, entangled representations are uploaded, balancing model
performance, privacy protection, and communication overhead.
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category contributes in a random proportion. Then, each entangled representation is uploaded to the123

server to train the global classifier by simultaneously categorizing it into multiple categories (see124

dash arrows in the right of Figure 1). As a result, the global classifier learns a decision boundary that125

captures the relationships of multiple categories, improving generalizability. Thus, classifying only a126

few entangled representations can enable effective generalization to vanilla representations. Besides,127

the entangled representation provides enhanced privacy protection since it cannot be mapped to any128

individual sample. Furthermore, uploading only an entangled representation per client significantly129

reduces communication overhead.130

In summary, the entangled representations provide effective, privacy-preserving, and lightweight131

client knowledge, forming the FedRE’s foundation. Next, we detail the FedRE.132

4.2 FedRE133

We begin by outlining the workflow of FedRE, as depicted in Figure 2. Each client has a local model134

comprising a representation extractor and a classifier. The process initiates with the calculation of an135

entangled representation per client through a simple Representation Entanglement (RE) mechanism.136

Subsequently, those entangled representations, generated from multiple clients, are uploaded to the137

server for training the global classifier. Next, we detail the update process of FedRE, which involves138

three main steps: (i) local model update; (ii) representation entanglement and upload; and (iii) global139

classifier update and broadcast.140

Client 1

Server

Representation
Extractor 1

Classifier 1𝟎. 𝟏, 𝟎. 𝟑,⋯ , 𝟎. 𝟒

…

Representation
Extractor K

Classifier K 𝟎. 𝟐, 𝟎. 𝟓,⋯ , 𝟎. 𝟏

Classifier

…
𝟎. 𝟐, 𝟎. 𝟓,⋯ , 𝟎. 𝟏𝟎. 𝟏, 𝟎. 𝟑,⋯ , 𝟎. 𝟒

Client K

𝟎. 𝟏, 𝟎. 𝟑,⋯ , 𝟎. 𝟒 𝟎. 𝟐, 𝟎. 𝟓,⋯ , 𝟎. 𝟏

…

…

Classifier Classifier

Representation
Entanglement

Representation
Entanglement

Weight Vector Weight Vector

Figure 2: FedRE workflow. Each client has a local
model including a representation extractor and a
classifier. All representations are entangled into a
single representation using a random normalized
weight vector on each client, and both are then
uploaded to the server to train the global classifier.

Local Model Update. Similar to vanilla feder-141

ated learning approaches such as FedAvg [26],142

FedRE requires each client to update its local143

model to effectively learn from local samples.144

To accomplish this, the optimization objective145

for the k-th client is formulated by146

min
θk

1

nk

∑
(xk

i ,y
k
i )∈Dk

Lce

[
hk(θk;x

k
i ),y

k
i

]
, (1)

where Lce(·, ·) denotes the cross-entropy loss.147

Representation Entanglement and Upload.148

We now introduce how to calculate a single149

entangled representation on each client. First,150

to address the heterogeneity of representations151

across clients with varying model architectures,152

we apply a simple average pooling AP(·) [8]153

operation to map all client representations into154

a unified space, ensuring consistency and en-155

abling the use of a shared global classifier. This156

approach allows for effective representation ag-157

gregation despite architectural differences, facilitating the collaborative learning of heterogeneous158

models (see Section 5.3 for an analysis of other representation mapping operations). Then, we159

calculate the entangled representation as160

r̃k =
∑
c∈Ck

wc
k

|Dc
k|

∑
(xk

i ,y
k
i )∈Dc

k

AP
[
gk(ϕk;x

k
i )
]
, (2)

where Dc
k be the set of samples belonging to category c in the k-th client, Ck be the label set161

of the k-th client, and wk = [w1
k, · · · , w

|Ck|
k ] is a normalized weight vector, where the elements162

are randomly drawn from a uniform distribution U(0, 1), and then normalized by dividing each163

element by the sum of all elements to ensure their sum equals one. Applying random entanglement164

weights for each category ensures diverse entangled representations, helping the global classifier learn165

more generalizable decision boundaries. Besides this RE method, we also detail other methods in166

Section 5.3. The weight vector indicates the probability distribution of each entangled representation167

across different categories, which can be interpreted as its label encoding. The specific usage is168

detailed below.169
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Global Classifier Update and Broadcast. Upon receiving the entangled representations and their170

corresponding weight vectors R̃ = {(r̃k,wk)}Kk=1, the server utilizes those entangled representa-171

tions and their associated weight vectors to update the global classifier. Accordingly, the server’s172

optimization objective is formulated as173

min
ω

K∑
k=1

∑
c∈Ck

wc
kLce

[
f(ω; r̃k),yc

]
, (3)

where f(ω; ·) represents the global classifier with parameters of ω, yc stands for the one-hot label174

associated with category c. By minimizing Eq. (3), we learn a global classifier based on the entangled175

representations, which can effectively categorize all training samples from various clients. Finally,176

the server broadcasts the updated global classifier to all clients for the next iteration.177

With the above update process, the FedRE method can be summarized in Algorithm 1.178

Algorithm 1 FedRE

Input: K clients with their respective datasets {Dk}Kk=1.
Output: Local models for all clients, i.e., {hk(θk; ·)}Kk=1.

1: Randomly initialize the global classifier f(ω; ·) and the local models {hk(θk; ·)}Kk=1.
2: for t = 0 to T − 1 do
3: for each client k in parallel do ▷ Client Side
4: Receive ω to update ωk and update θk according to Eq. (1).
5: Randomly generate and normalize wk.
6: Calculate r̃k according to Eq. (2) and upload (r̃k,wk) to the server.
7: end for
8: Update ω according to Eq. (3) and broadcast ω to all clients. ▷ Server Side
9: end for

4.3 RE vs. Mixup179

We now compare RE and mixup [50]. Mixup is a popular data augmentation technique that aims to180

linearly interpolate two representations and their corresponding labels to synthesize a new representa-181

tion. Let R = {(ri,yi)}ni=1 denote the set of representations on a single client, where ri represents182

the representation of the i-th sample, and yi denotes its associated one-hot label over C categories.183

Recall that mixup is formulated as follows:184

r̃mixup = λri + (1− λ)rj , ỹmixup = λyi + (1− λ)yj , (4)

where λ ∼ Beta(α, α), for α ∈ (0,∞). In contrast, RE, specifically designed for FL, aims to185

ensure model performance while reducing communication costs and privacy risks. Its general form is186

formulated as follows:187

r̃RE =
n∑

i=1

wiri, ỹRE =
n∑

i=1

wiyi, (5)

where wi ∈ [0, 1] is the weight of ri and can be determined by various RE methods (see details in188

Appendix B). As indicated by Eqs. (4)–(5), mixup performs linear interpolation between pairs of189

representations, while RE entangles the entire set of representations from each client using a weighted190

sum. Furthermore, RE trains the classifier by calculating a weighted sum of losses across multiple191

categories, with the weights determined by their contributions.192

4.4 Convergence Analysis193

We present the convergence analysis of FedRE in the model-heterogeneous setting, focusing on the194

convergence conditions and rate for the local objective of an arbitrary client. Let t ∈ {0, . . . , T − 1}195

be the global communication round and e ∈ {0, 1, . . . , E} be the local iteration. At the start of the196

(t + 1)-th round, denoted as (tE + 0), each client replaces the local classifier with the global one197

trained in the t-th round. The first iteration of the (t+ 1)-th round is (tE + 1), and (tE +E) marks198

the final iteration of that round. Our convergence analysis is based on the following assumptions,199

which are similar to those used in existing FL studies [45, 36].200

Assumption 1. Each local objective function is L1-Lipschitz smooth, i.e., there exists a constant L1 >201

0 such that ∥∇L
(
θt1
k ;Dk

)
−∇L

(
θt2
k ;Dk

)
∥2 ≤ L1

∥∥θt1
k − θt2

k

∥∥
2
, ∀t1, t2 > 0, k ∈ {1, · · · ,K}.202
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Assumption 2. The stochastic gradient (i.e., mini-batch gradient) on each client is unbiased,203

i.e., EBk⊆Dk
[∇L (θk;Bk)] = ∇L (θk;Dk), and its variance is bounded by a constant σ2, i.e.,204

EBk⊆Dk

[
∥∇L (θk;Bk)−∇L (θk;Dk)∥22

]
≤ σ2, k ∈ {1, · · · ,K}.205

Assumption 3. The divergence between the local and global classifiers is bounded by two constants206

ϵ2 and δ2, i.e., ∥ωt+1
k − ωt∥22 ≤ ϵ2, ∥ωt

k − ωt∥22 ≤ δ2, ∀t > 0, k ∈ {1, · · · ,K}.207

Assumption 1 ensures that the true gradient (i.e., full-batch gradient) of the local objective function208

remains stable. Assumption 2 ensures the expectation of the stochastic gradient matches the true209

gradient and limits excessive variations. Assumption 3 ensures that the divergence between the local210

and global classifiers in consecutive rounds remains small. Based on them, we first establish the211

convergence conditions for FedRE in Theorem 1 and then derive its convergence rate in Theorem 2.212

Theorem 1. Under Assumptions 1 to 3 and the local learning rate satisfying ηe
′

l <213

2
∑e′

e=0∥∇LtE+e∥2
2

L1Eσ2+L1
∑e′

e=0∥∇LtE+e∥2
2

, e′ ∈ {0, 1, . . . E − 1}, the local objective functions convergence.214

Theorem 2. Under Assumptions 1 to 3, let ∆ = L0 − L∗ where L0 and L∗ denote the initial and215

optimal values of the local objective function, respectively. For an arbitrary client, given any ξ > 0,216

when T > 2∆
ξE(2ηl−L1η2

l )−L1Eη2
l σ

2−L1δ2
, and the local learning rate satisfying ηl <

2ξ
ξL1+L1σ2 , we217

have 1
TE

∑T−1
t=0

∑E−1
e=0 E ∥∇LtE+e∥22 ≤ ξ.218

The proofs of Theorems 1 and 2 are provided in Appendix C.219

5 Experiments220

5.1 Experimental Setup221

Datasets and Baselines. We adopt three benchmark datasets: CIFAR-10 [15], CIFAR-100 [15],222

and TinyImageNet [16]. Moreover, we compare FedRE with seven state-of-the-art approaches:223

LG-FedAvg [22], FedGH [45], FedKD [42], FedGen [55], FedProto [36], FPL [11], FedTGP [53], as224

well as a Local method that trains local models independently on each client without communication.225

Evaluation Metrics. We evaluate model performance by calculating the classification accuracy on the226

test set across all clients. To ensure a fair comparison, we report the average classification accuracy of227

the final round after 100 rounds, calculated across three random experiments, along with its standard228

deviation. Communication overhead is measured by the total number of parameters uploaded and229

broadcast per round, respectively. To evaluate privacy protection, we adopt Peak Signal-to-Noise230

Ratio (PSNR) [31] and Mean Squared Error (MSE), which measure the fidelity of reconstructed231

images. Low PSNR and high MSE indicate substantial reconstruction errors, suggesting that the232

original image is difficult to recover and thus privacy is well preserved. For privacy protection,233

we adopt Peak Signal-to-Noise Ratio (PSNR) [31] and Mean Squared Error (MSE) as evaluation234

metrics. Those metrics reflect the quality of reconstructed images, with lower PSNR and higher MSE235

indicating greater distortion and, thus, stronger privacy protection.236

Model-Heterogeneous settings. We configure 10 clients with 10 distinct model architectures: a237

4-layer CNN from [51], MobileNetV2 [30], GoogleNet [35], five ResNet models (ResNet-18, ResNet-238

34, ResNet-50, ResNet-101, ResNet-152) [10], and two Vision Transformer (ViT) models (ViT-B/16239

and ViT-B/32) [9].240

Statistic-Heterogeneous settings. We follow [51] to adopt both practical (PRA) [23, 19] and241

pathological (PAT) [32] settings. In the PRA setting, samples are distributed across clients using a242

Dirichlet distribution [23] with a parameter α, which is set to 0.1 by default across all datasets. In the243

PAT setting, each client is assigned samples from 2, 10, and 20 categories, drawn from a total of 10,244

100, and 200 categories in CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively, with varying245

sample sizes. More experimental details can be found in Appendix D.246

5.2 Main Experiments247

Q1: How does FedRE perform in the model-heterogeneous setting across different statistical248

heterogeneity scenarios? The results under the model-heterogeneous FL setting are listed in249
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Table 1: Accuracy (%) comparison on three datasets under the model-heterogeneous setting. In each
column, the best results are bolded, and the second-best results are underlined.

Method PRA PAT Average
CIFAR-10 CIFAR-100 TinyImageNet CIFAR-10 CIFAR-100 TinyImageNet

LG-FedAvg [22] 80.90 ± 0.17 41.96 ± 0.03 25.16 ± 0.42 85.35 ± 0.25 58.24 ± 0.33 32.26 ± 0.28 53.98
FedGH [45] 78.66 ± 0.34 40.91 ± 0.26 25.04 ± 0.11 85.43 ± 0.03 58.07 ± 0.33 31.98 ± 0.29 53.35
FedKD [42] 80.79 ± 0.38 41.33 ± 0.25 25.39 ± 0.36 84.03 ± 0.17 55.61 ± 0.10 31.73 ± 0.20 53.15
FedGen [55] 81.16 ± 0.12 41.46 ± 0.10 25.45 ± 0.19 84.88 ± 0.18 57.87 ± 0.67 31.96 ± 0.21 53.80

FedProto [36] 78.36 ± 0.52 35.00 ± 0.34 18.16 ± 0.08 83.81 ± 0.18 56.72 ± 0.11 29.61 ± 0.02 50.28
FPL [11] 77.40 ± 0.07 36.66 ± 0.30 22.64 ± 0.34 83.89 ± 0.20 53.21 ± 0.09 29.16 ± 0.05 50.49

FedMRL [46] 81.28 ± 0.02 34.41 ± 0.03 20.92 ± 0.05 83.30 ± 0.01 54.25 ± 0.14 27.37 ± 0.01 50.26
FedTGP [53] 81.32 ± 0.33 35.89 ± 0.07 28.70 ± 0.01 84.68 ± 0.11 54.67 ± 0.24 35.64 ± 0.06 53.48

Local 81.20 ± 0.05 41.57 ± 0.10 25.81 ± 0.15 84.68 ± 0.07 57.96 ± 0.12 33.02 ± 0.14 54.04
FedRE 82.60 ± 0.01 46.36 ± 0.09 30.48 ± 0.13 86.20 ± 0.14 62.56 ± 0.32 38.52 ± 0.08 57.12

Table 1. We have several insightful observations. (1) FedRE substantially outperforms all the250

baselines across various scenarios. In particular, FedRE achieves an accuracy on TinyImageNet251
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Figure 3: Accuracy (%) comparison between distinct com-
munication rounds on the TinyImageNet dataset in the model-
heterogeneous setting.

that surpasses those of LG-FedAvg,252

FedGH, and FedKD by 6.26%, 6.54%,253

and 6.79%, respectively, under the254

PAT setting. Also, several methods255

do not exceed the performance of Lo-256

cal, indicating that the scenarios are257

challenging. (2) FedRE outperforms258

FedGH, suggesting that using entan-259

gled representations to train the global260

classifier is more effective than us-261

ing prototypes. One reason is that262

entangled representations incorporate263

information from multiple categories,264

whereas prototypes do not. (3) LG-265

FedAvg is worse than FedRE, which266

indicates that directly aggregating local classifiers from clients to form the global classifier is267

less effective than carefully optimizing the global classifier using entangled representations. Also,268

Figures 3(a)-(b) show that the accuracy of FedRE increases initially and then stabilizes on the269

TinyImageNet dataset, consistently outperforming other baselines during training, suggesting stable270

performance convergence. Moreover, we evaluate FedRE under various statistical-heterogeneous271

settings in Q8 of Section 5.3, including large-scale participation (i.e., 100 clients).272

Table 2: Communication overhead (# params ×103) comparison on the CIFAR-100 dataset. In each
row, the best results are bolded, and the second-best results are underlined.

Metric LG-FedAvg FedGH FedKD FedGen FedProto FedMRL FedTGP FPL FedRE
Upload 513.00 257.02 4234.28 9247.08 257.02 8863.08 257.02 257.02 5.12

Broadcast 513.00 512.00 4234.28 513.00 512.00 8863.08 512.00 916.48 513.00

Q2: What is the communication overhead of FedRE? We conduct communication overhead273

experiments on the CIFAR-100 dataset in the model-heterogeneous settings. As shown in Table 2,274

FedRE achieves the lowest communication overhead during the upload phase, as it uploads only275

a single entangled representation from each client to the server. During the broadcast phase, its276

overhead is comparable to that of classifier-based methods (e.g., LG-FedAvg) and prototype-based277

methods (e.g., FedProto). More results are offered in Appendix F.1278

Q3: Can entangled representations effectively resist privacy attacks? We adhere to the setting279

stated in the Threat Model section (Section 3) to reconstruct the original samples from entangled280

representations. Also, we compare the resilience of both representations and prototypes. Figure 4281

depicts the reconstruction results on the TinyImageNet datasets (More results are offered in Ap-282

pendix F.2). We can make several key observations: (1) Most image contours are reconstructed from283

the representations, indicating their vulnerability to privacy attacks. (2) Some category information,284

such as the presence of a fish, is leaked through reconstructed prototypes, as prototypes encapsulate285

representative category information. (3) The reconstructed images from entangled representations286

reveal no identifiable information, demonstrating their effectiveness against privacy attacks. In287

addition, the PSNR values for images reconstructed from representations, prototypes, and entangled288
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representations are 12.89, 10.25, and 9.66, with corresponding MSE values of 4514.91, 6992.04, and289

7781.87. These results indicate that entangled representations yield the lowest PSNR and highest290

MSE, suggesting stronger privacy protection. Overall, all results demonstrate the superior privacy291

protection provided by entangled representations.

(a) Original images (b) Reconstruction from representations

(c) Reconstruction from prototypes (d) Reconstruction from entangled representations

Figure 4: Privacy protection comparison between representations, prototypes, and entangled repre-
sentations on the TinyImageNet dataset.

292

5.3 Analysis293

Q4: What are the advantages of uploading a single entangled representation per client compared294

to uploading all representations?295

Table 3: Accuracy (%) and communication overhead com-
parison on the TinyImageNet dataset. In each column, the
best results are bolded, and the second-best results are
underlined.

Method PRA PAT
Accuracy (%)# Params (×103)Accuracy (%)# Params (×103)

FedAllRep 31.20 42160.39 38.62 42258.88
FedRE 30.48 4118.48 38.52 4118.48

To explore the benefits of entan-296

gled representations, we compare Fe-297

dRE with FedAllRep, which uses all298

clients’ representations to train the299

global classifier. Table 3 lists the re-300

sults on the TinyImageNet dataset in301

both the PRA and PAT settings. As302

can be seen, FedRE achieves perfor-303

mance comparable to FedAllRep, sug-304

gesting that uploading a single entangled representation per client can effectively support global305

classifier training. Also, FedRE significantly reduces communication overhead, providing a clear306

advantage over uploading all representations.307

Q5: How effective are various RE methods? We provide a comprehensive analysis of various308

RE methods (see mathematical details in Appendix B): (1) Random Select Representation (RSR)309

randomly selects one representation from each client; (2) Vanilla Average Representation (VAR)310

averages all representations per client into a single representation, with equal weight assigned to311

each; (3) Random Average Representation (RAR) entangles all representations per client into a312

single representation using a normalized weight vector, with elements randomly drawn from U(0, 1)313

and normalized to sum to one; (4) Random Select Prototype (RSP) calculates prototypes for each314

client and randomly selects one prototype per client; (5) Vanilla Average Prototype (VAP) calculates315

prototypes for each client and averages them into a single representation, with equal weight assigned316

to each; (6) Random Average Prototype (RAP) calculates prototypes for each client and entangles317

them into a single representation using a normalized weight vector, with elements randomly drawn318

from U(0, 1) and normalized to sum to one. Table 4 lists the results on the CIFAR-10 and CIFAR-100319

datasets in the PRA setting. We have the following observations. (1) RSR performs the worst, as320

each client uploads only a randomly selected representation, which is insufficient to train the global321

classifier. (2) RSP outperforms RSR, as the prototype encodes the knowledge of all representations322

within a category, it is more representative than a single representation. (3) VAP and RAP outperform323

VAR and RAR, respectively, indicating that prototype-based entanglement yields better model324

performance. (4) RAP surpasses VAP, demonstrating that random weights for entanglement are more325

effective than equal weights. Thus, we empirically choose RAP in the implementation of FedRE.326

Q6: How effective are various representation mapping operations? We analyze various repre-327

sentation mapping operations to address the heterogeneity of representations with different model328

architectures: (1) Average Pooling (AP) maps the representations to a unified space by averaging the329

values across regions. (2) Max Pooling (MP) maps the representations to a unified space by selecting330

the maximum values across regions. (3) Full Connection (FC) maps the representations to a unified331

space by using a fully connected layer transformation. Table 5 presents the results on the CIFAR-100332
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Table 4: Accuracy (%) comparison between dis-
tinct representation entanglement mechanisms on
the CIFAR-10 and CIFAR-100 datasets in the PRA
setting. In each row, the best results are bolded,
and the second-best results are underlined.

Dataset RSR VAR RAR RSP VAP RAP
CIFAR-10 79.10 81.32 80.20 80.45 81.42 82.60

CIFAR-100 40.41 44.88 43.19 43.25 46.12 46.36

Table 5: Accuracy (%) comparison between
distinct representation mapping operation on
the CIFAR-100 dataset in PRA and PAT set-
tings. In each row, the best results are bolded,
and the second-best results are underlined.

Setting AP MP FC
PRA 46.36 45.97 44.53
PAT 62.56 61.93 60.19

dataset in both PRA and PAT settings. We observe that AP achieves the best performance. One333

possible reason is that AP captures more comprehensive information by averaging all values across334

regions. Thus, we empirically select AP in the implementation of FedRE.335

Q7: How does FedRE perform under different participation ratios with varying statistical336

heterogeneity? We conduct experiments on the CIFAR-10 dataset under the partial participation337

setting with varying levels of statistical heterogeneity. Specifically, we adopt 100 clients and set338

participation rates to 10/100 and 20/100, while adjusting the Dirichlet distribution parameter α to339

0.07 and 0.1, respectively, in the PRA setting. Furthermore, we follow [17] and simulate the long-tail340

settings by modifying imbalance factors (IF) to 100 and 50, then set α to 0.07. The results in Table 6341

show that FedRE outperforms other methods across most scenarios, confirming its effectiveness342

under partial participation with highly heterogeneous distributions. In addition, we evaluate other343

statistical-heterogeneous settings in Appendix F.3. All the results indicate that FedRE is effective344

across diverse scenarios.345

Table 6: Accuracy (%) comparison for partial participation scenarios with varying statistical hetero-
geneity in the PRA setting on the CIFAR-10 dataset. Here, α is a Dirichlet distribution parameter,
and IF denotes imbalance factors of the long-tail setting. In each column, the best results are bolded,
and the second-best results are underlined.

Method Participation
rate α = 0.07α = 0.1

IF = 100,
α = 0.07

IF = 50,
α = 0.07

Participation
rate α = 0.07α = 0.1

IF = 100,
α = 0.07

IF = 50,
α = 0.07

FedProto [36]
10 / 100

54.00 51.18 45.21 43.92
20 / 100

56.90 55.47 47.08 44.68
FedGH [45] 78.23 76.87 67.30 63.73 80.57 77.84 65.56 64.90

FedRE 81.17 79.56 67.12 66.37 82.80 81.99 69.33 68.81

Q8: Does FedRE remain effective in the model-homogeneous setting? Since model-homogeneous346

FL can be regarded as a special case of model-heterogeneous FL, we evaluate FedRE under the model-347

homogeneous setting in both PRA and PAT settings. In addition to model-heterogeneous methods,348

we include additional model-homogeneous baseline methods, i.e., FedAvg [26], FedAvgDBE [51],349

and FedALA [52], for comparison. The results are presented in Table 10 in Appendix F.4. As shown,350

FedRE achieves the best performance across all datasets. Also, Figures 10(c)-(d) in Appendix F.4351

show that FedRE maintains superior accuracy during the training process on the TinyImageNet352

dataset, indicating stable performance convergence. Those results further confirm that FedRE is still353

effective in the model-homogeneous FL scenarios.354

We investigate two additional analysis experiments in Appendix E: (1) a combined analysis of355

representation entanglement and mapping, and (2) a feature visualization analysis. Those analyses356

further verify the effectiveness of FedRE.357

6 Conclusion358

In this paper, we rethink client knowledge in FL and introduce the entangled representation, which359

serves as an effective, privacy-preserving, and lightweight form of client knowledge. Building on360

this concept, we propose FedRE to address the model-heterogeneous FL problem, where each client361

entangles all local representations from distinct categories into a single representation and uploads it362

to the server to collaboratively train the global classifier. We provide a theoretical analysis of FedRE’s363

convergence properties. Experiments on three datasets confirm that FedRE achieves a well-balanced364

trade-off between model performance, privacy protection, and communication overhead. Accordingly,365

we believe that the concept of entangled representations offers a novel perspective to balancing those366

critical factors in FL. One promising direction for future work is to extend this concept to more367

challenging FL scenarios, for instance, federated class-incremental learning [5].368
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Additional details and results are provided in the appendices, covering the following contents.502

• Appendix A: Limitations and broader impacts of FedRE.503

• Appendix B: Implementation details for various representation entanglement methods.504

• Appendix C: Convergence proof for FedRE.505

• Appendix D: Detailed experimental setup.506

• Appendix E: Additional experiments for analysis.507

• Appendix F: Supplementary experimental results (not included in the main text).508

A Limitations and Broader Impacts509

Limitations. While entangled representations provide effective, privacy-preserving, and lightweight510

client knowledge for FL, they are primarily designed for federated discriminative tasks such as image511

classification. Consequently, they cannot be directly applied to federated generative tasks, including512

text generation. Extending entangled representations to federated generative modeling remains a513

promising direction for future research.514

Broader Impacts. This work tackles the dual challenges of model and statistical heterogeneity in515

FL. The proposed method requires each client to upload only an entangled representation to the516

server, which achieves a balanced trade-off among model performance, communication overhead,517

and privacy protection. Such a design is especially well-suited for collaborative learning scenarios518

involving diverse, resource-limited devices like smartphones, improving practical usability and519

supporting scalable deployment.520

B Mathematical Details of Various Representation Entanglement Methods521

We now introduce the mathematical details of different RE mechanisms. The general form of RE,522

calculated from a single client’s representation set R = {ri,yi}ni=1, is formulated as follows:523

r̃RE =

n∑
i=1

wiri, ỹRE =

n∑
i=1

wiyi, (6)

where wi ∈ (0, 1) is the weight of ri, which can be determined by different RE methods as follows:524

• Random Select Representation (RSR) randomly selects one representation from each client per525

global communication round. Thus, wi can be considered as a binary value:526

wi =

{
1, if ri is selected
0, otherwise.

(7)

• Vanilla Average Representation (VAR) averages all representations per client into a single527

representation, with equal weight assigned to each. Thus, wi is simply:528

wi =
1

n
,∀i ∈ {1, 2, · · · , n}. (8)

• Random Average Representation (RAR) entangles representations per client into a single rep-529

resentation using a normalized weight vector, with elements randomly drawn from U(0, 1) and530

normalized to sum to one. Therefore, the specific form of wi is:531

wi =
ui∑n
i=1 ui

,where ui ∼ U(0, 1). (9)

• Random Select Prototype (RSP) calculates prototypes for each client and randomly selects one532

prototype per client in each global communication round. Hence, wi can be formulated as follows:533

wi =

{
1
nc
, if c-th prototype is selected

0, otherwise.
(10)
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• Vanilla Average Prototype (VAP) calculates prototypes for each client and averages them into a534

single representation, with equal weight assigned to each. Thus, wi is:535

wi =
1

Cnc
, if ribelongs to category c. (11)

• Random Average Prototype (RAP) calculates prototypes for each client and entangles them into536

a single representation using a normalized weight vector, with elements randomly drawn from537

U(0, 1) and normalized to sum to one. Thus, wi can be calculated as follows:538

wi =
ui

nc

∑n
i=1 ui

, if ri belongs to category c,where ui ∼ U(0, 1). (12)

C Convergence Proof for FedRE539

To prove Theorem 1 and Theorem 2, we first introduce and prove the Lemma 1 and Lemma 2.540

Lemma 1. Under Assumptions 1 and 2, in the t+ 1-th communication round, the local objective541

function is bounded from the initial to the final local iteration, i.e., E
[
L(t+1)E

]
≤ LtE+0 − (ηl −542

L1η
2
l

2 )
∑E−1

e=0 ∥∇LtE+e∥22 +
L1Eη2

l

2 σ2.543

Lemma 1, originally derived by [36], is accompanied by a detailed proof in their work.544

Lemma 2. Under Assumptions 1 to 3, the local objective function is bounded after the local classifier545

is replaced by global one, i.e., E[L(t+1)E+0] ≤ E[L(t+1)E ] +
L1

2 δ2.546

Proof.547

L(t+1)E+0 = L(t+1)E + L(t+1)E+0 − L(t+1)E (13)

= L(t+1)E + L(ϕ(t+1)E
k ,ω(t+1)E ;Dk)− L(ϕ(t+1)E

k ,ω
(t+1)E
k ;Dk) (14)

≤ L(t+1)E +
〈
∇L(ϕ(t+1)E

k ,ω
(t+1)E
k ), (ϕ

(t+1)E
k ,ω(t+1)E)− (ϕ

(t+1)E
k ,ω

(t+1)E
k )

〉
(15)

+
L1

2

∥∥∥(ϕ(t+1)E
k ,ω(t+1)E)− (ϕ

(t+1)E
k ,ω

(t+1)E
k )

∥∥∥2
2

≤ L(t+1)E +
L1

2

∥∥∥(ϕ(t+1)E
k ,ω(t+1)E)− (ϕ

(t+1)E
k ,ω

(t+1)E
k )

∥∥∥2
2

(16)

= L(t+1)E +
L1

2

∥∥∥ω(t+1)E − ω
(t+1)E
k

∥∥∥2
2
. (17)

Eq. (15) follows from the quadratic bound in Assumption 1, i.e., Lt1 −Lt2 ≤ ⟨∇Lt2 , (θ
t1 − θt2)⟩+548

L1

2 ∥θt1 − θt2∥22. Eq. (16) is derived based on Assumption 3. Furthermore, taking expectations on549

both sides of Eq. (17), we obtain550

E[L(t+1)E+0] ≤ E[L(t+1)E ] +
L1

2
E
[
∥ω(t+1)E − ω

(t+1)E
k ∥22

]
. (18)

According to Assumption 3, Eq. (18) can be derived as551

E[L(t+1)E+0] ≤ E[L(t+1)E ] +
L1

2
δ2. (19)

Next, we provide detailed proofs for Theorem 1 and Theorem 2.552

C.1 Proof for Theorem 1553

Based on Lemma 1 and Eq. (19), we have554

E[L(t+1)E+0] ≤ LtE+0 − (ηl −
L1η

2
l

2
)

E−1∑
e=0

∥∇LtE+e∥22 +
L1Eη2l

2
σ2 +

L1

2
δ2. (20)
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If the local objective function is to converge, then the following inequality holds:555

−(ηl −
L1η

2
l

2
)

E−1∑
e=0

∥∇LtE+e∥22 +
L1Eη2l

2
σ2 +

L1

2
δ2 < 0. (21)

Accordingly, we obtain556

ηl <
2
∑E−1

e=0 ∥∇LtE+e∥22
L1Eσ2 + L1

∑E−1
e=0 ∥∇LtE+e∥22

. (22)

Thus, based on Eq. (22), if the local learning rate satisfies:557

ηe
′

l <
2
∑e′

e=0 ∥∇LtE+e∥22
L1Eσ2 + L1

∑e′

e=0 ∥∇LtE+e∥22
, e′ = 0, 1, . . . , E − 1, (23)

then the convergence of the local objective function is guaranteed.558

C.2 Proof for Theorem 2559

Taking expectations on both sides of Eq. (20), we have560

E[L(t+1)E+0] ≤ LtE+0 − (ηl −
L1η

2
l

2
)

E−1∑
e=0

E
[
∥∇LtE+e∥22

]
+

L1Eη2l
2

σ2 +
L1

2
δ2

⇒
E−1∑
e=0

E
[
∥∇LtE+e∥22

]
≤

LtE+0 − E[L(t+1)E+0] +
L1Eη2

l

2 σ2 + L1

2 δ2

ηl −
L1η2

l

2

.

(24)

Accordingly, we have561

1

TE

T−1∑
t=0

E−1∑
e=0

E
[
∥∇LtE+e∥22

]
≤

1
TE

∑T−1
t=0

(
LtE+0 − E[L(t+1)E+0]

)
+

L1η
2
l

2 σ2 + L1

2E δ2

ηl −
L1η2

l

2

. (25)

If the local objective function is to converge, then the right side of Eq. (25) satisfies562

2
TE

∑T−1
t=0

(
LtE+0 − E[L(t+1)E+0]

)
+ L1η

2
l σ

2 + L1

E δ2

2ηl − L1η2l
< ξ, (26)

where ξ is an arbitrarily small positive value. Let ∆ = L0−L∗ where L0 and L∗ denote the initial and563

optimal values of the local objective function, respectively. Since
∑T−1

t=0

(
LtE+0 − E[L(t+1)E+0]

)
≤564

∆, Eq. (26) holds when565

2∆
TE + L1η

2
l σ

2 + L1

E δ2

2ηl − L1η2l
< ξ ⇒ T >

2∆

ξE(2ηl − L1η2l )− L1Eη2l σ
2 − L1δ2

. (27)

Since T > 0 and ∆ ≥ 0, based on Eq. (27), we obtain566

ξE(2ηl − L1η
2
l )− L1Eη2l σ

2 − L1δ
2 > 0 ⇒ ηl <

2ξ

ξL1 + L1σ2
. (28)

D Detailed Experimental Setup567

We implement the FedRE based on the PFLlib framework [54], engaging ten clients with a default568

participation rate of 100%. On each client, training involves one local epoch utilizing mini-batch569

stochastic gradient descent (SGD) with a learning rate of 0.05. The dimensionality of the unified570

space across distinct clients is set to 512. The local samples are divided in a 3:1 ratio for training571

and testing. For the CIFAR-10 and CIFAR-100 datasets, we set the batch size to 32, and for the572

TinyImageNet dataset, it is set to 64. On the server, the optimizer is SGD with a learning rate of573

0.01 and a batch size of 10. For clarity, the detailed setup is summarized in Table 7. In addition, the574

experiments are conducted on NVIDIA GPUs, primarily including the GeForce RTX A800.575
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Table 7: Detailed experimental setup utilized in this paper.
Devices

CPU: Intel(R) Xeon(R) Gold 6348
SSD:100GB

GPU: A800-80GB
Software Tools

CUDA 12.1
Pytorch 2.1.0
Python 3.10

Statistic-heterogeneous Setting
Practical setting (PRA) & Pathological setting (PAT)

Model Training
Local batch size: 64 (TinyImageNet), 32 (CIFAR-10&100)

Local Optimizer: SGD
Local learning rate ηl:

0.06 (Model-heterogeneity with PRA & PAT, CIFAR-10&CIFAR-100&TinyImageNet);
0.01 (Model-homogeneity with PRA & PAT, CIFAR-100&TinyImageNet);

0.007 (Model-homogeneity with PRA, CIFAR-10);
0.008 (Model-homogeneity with PAT, CIFAR-10)

Server batch size: 10
Server Optimizer : SGD
Server learning rate: 0.01

Model Setting
Local model in model-heterogeneity: CNN model/ GoogleNet/ MobileNetv2

/ ResNet family/ Vision Transformer models
Local model in model-homogeneity: CNN model (CIFAR-10&100)

ResNet18 (TinyImageNet)

E Additional Analysis576

Q9: How effective are different combinations of representation entanglement and mapping577

strategies? We further investigate the combination of distinct representation entanglement meth-578

ods and representation mapping operations. Table 8 lists the results on CIFAR-10 in the model-579

heterogeneous setting under the PRA setting. Among the tested combinations, RAP + AP yields the580

highest accuracy compared to other combinations, highlighting the effectiveness of this combination.581

Table 8: Accuracy (%) comparison with distinct combinations of representation entanglement and
mapping strategies on the CIFAR-10 datasets in the PRA setting. The best results are bolded, and the
second-best results are underlined.

RSR VAR RAR RSP VAP RAP
AP 79.10 81.32 80.20 80.45 81.42 82.60
MP 78.37 81.17 80.31 80.07 80.64 81.93
FC 78.02 80.60 79.69 79.92 80.29 81.28

Q10: What does the representation distribution learned by FedRE look like? We employ the582

t-SNE technique [38] to visualize the learned prototypes of FedAvg, FedProto, FedGH, and FedRE583

on the CIFAR-10 dataset. Figure 5 reveals that in FedRE, prototypes from different clients belonging584

to the same category cluster more tightly, with clearer boundaries across distinct categories. This585

indicates that FedRE effectively integrates knowledge from different clients to facilitate their learning.586

(a) FedAvg (b) FedProto (c) FedGH (d) FedRE

Figure 5: t-SNE visualization of prototypes learned by distinct approaches, where distinct colors
represent different categories.
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F Supplementary Experimental Results587

F.1 Communication Overhead Evaluation588

Table 9: Communication overhead (# params ×103) comparison on three datasets. In each column,
the best results are bolded, and the second-best results are underlined.

Method
CIFAR-10 CIFAR-100 TinyImageNet

Model-homo Model-hete Model-homo Model-hete Model-homo Model-hete
UploadBroadcastUploadBroadcastUpload BroadcastUploadBroadcast Upload Broadcast Upload Broadcast

LG-FedAvg [22] 51.30 51.30 51.30 51.30 513.00 513.00 513.00 513.00 4098.00 4098.00 4098.00 4098.00
FedGH [45] 31.23 51.20 31.23 51.20 257.02 512.00 257.02 512.00 1918.98 4096.00 1918.98 4096.00
FedKD [42] 3374.28 3374.28 3353.68 3353.68 4234.28 4234.28 3524.67 3524.67 90503.00 90503.00 57544.97 57544.97
FedGen [55] 8785.38 8785.38 51.30 51.30 9247.08 9247.08 513.00 513.00 239178.32 239178.32 4098.00 4098.00

FedProto [36] 31.23 51.20 31.23 51.20 257.02 512.00 257.02 512.00 1918.98 4096.00 1918.98 4096.00
FPL [11] 31.23 87.04 31.23 112.64 257.02 916.48 257.02 1182.72 1918.98 9768.96 1918.98 10567.68

FedMRL [46] 8746.98 8746.98 8746.98 8746.98 8863.08 8863.08 8863.08 8863.08 56178.00 56178.00 56178.00 56178.00
FedTGP [53] 31.23 51.20 31.23 51.20 257.02 512.00 257.02 512.00 1918.98 4096.00 1918.98 4096.00
FedAvg [26] 8785.38 8785.38 - - 9247.08 9247.08 - - 239178.32 239178.32 - -
FedALA [52] 8785.38 8785.38 - - 9247.08 9247.08 - - 239178.32 239178.32 - -

FedAvgDBE [51]8785.38 8785.38 - - 9247.08 9247.08 - - 239178.32 239178.32 - -

FedRE 5.12 51.30 5.12 51.30 5.12 513.00 5.12 513.00 20.48 4098.00 20.48 4098.00

Table 9 lists all the results of communication overhead on the CIFAR-10, CIFAR-100, and TinyIm-589

ageNet datasets under both model-heterogeneous (Model-hete) and model-homogeneous (Model-590

homo) scenarios. we can see that FedRE consistently exhibits the lowest communication overhead591

across all scenarios. Furthermore, as the dataset size and number of categories increase, the commu-592

nication overhead of FedRE decreases more significantly.593

F.2 Privacy Protection Evaluation594

Figure 6 provides more image reconstruction results. As can be observed, the content and categories of595

images reconstructed from the entangled representations are indistinguishable, further demonstrating596

that FedRE provides superior privacy protection.597

(a) Original images

(b) Reconstructed images from representations

(c) Reconstructed images from prototypes

(d) Reconstructed images from entangled representations

Figure 6: Privacy protection comparison on the TinyImageNet dataset.

F.3 Statistical Heterogeneity Analysis598

To further assess the effectiveness of FedRE under varying degrees of statistical heterogeneity, we599

adjust the Dirichlet distribution parameter α (i.e., 0.05, 0.1, 1, 10) in the PRA setting and the600
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Figure 7: Accuracy (%) comparison between distinct statistic-heterogeneous scenarios on the CIFAR-
10 and CIFAR-100 datasets.

client participation rate (i.e., 5/25, 10/25 for 25 clients, 5/10, 10/10 for 10 clients) in the PAT601

setting, respectively, to control sample skewness. The resulting sample distributions are visualized in602

Figures 8-9. The results on the CIFAR-10 and CIFAR-100 datasets, under the model-heterogeneous603

setting, are shown in Figure 7. As can be seen, FedRE consistently achieves the highest accuracy604

across different levels of statistical heterogeneity, demonstrating its adaptability to various statistic-605

heterogeneous scenarios.606
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(e) CIFAR-100 (α = 0.05)
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(f) CIFAR-100 (α = 0.1)
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(g) CIFAR-100 (α = 1)
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Figure 8: The sample distributions for all clients on the CIFAR-10 and CIFAR-100 datasets under the
PRA settings with varying parameters α. The size of each circle indicates the number of samples.
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(b) CIFAR-10 (25 Clients)
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(c) CIFAR-100 (10 Clients)
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Figure 9: The sample distributions for all clients on the CIFAR-10 and CIFAR-100 datasets under the
PAT settings with varying client numbers. The size of each circle indicates the number of samples.

F.4 Model-homogeneous FL Evaluation607

Model-homogeneous FL can be regarded as a special case of model-heterogeneous FL, where all608

clients utilize the same local model. In our experiments, we adopt a four-layer CNN for the CIFAR-10609

and CIFAR-100 datasets and use ResNet-18 for the TinyImageNet dataset.610
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Table 10 presents the results under the model-homogeneous setting, where FedRE achieves the best611

performance across all datasets. Specifically, FedRE’s average accuracy is 63.88%, outperforming612

the second-best method, i.e., LG-FedAvg, by 3.25%. Those results further confirm the effectiveness613

of FedRE. Additionally, Figures 10(c)-(d) provide performance convergence comparisons on the614

TinyImageNet dataset, where FedRE consistently maintains superior accuracy during the training615

process, indicating stable performance convergence.616

Table 10: Accuracy (%) comparison on three datasets under the model-homogeneous setting. In each
column, the best results are bolded, and the second-best results are underlined.

Algorithm PRA PAT Average
CIFAR-10 CIFAR-100 TinyImageNet CIFAR-10 CIFAR-100 TinyImageNet

LG-FedAvg [22] 86.92 ± 0.25 49.82 ± 0.39 32.00 ± 0.13 90.59 ± 0.17 66.00 ± 0.27 38.43 ± 0.23 60.63
FedAvg [26] 55.21 ± 0.12 30.37 ± 0.02 13.66 ± 0.41 52.70 ± 0.11 24.89 ± 0.20 9.98 ± 0.48 31.14
FedALA [52] 55.02 ± 0.14 29.89 ± 0.22 13.63 ± 0.10 52.83 ± 0.19 24.91 ± 0.15 10.65 ± 0.15 31.16
FedGH [45] 86.02 ± 0.17 48.59 ± 0.60 28.64 ± 0.26 90.46 ± 0.22 65.14 ± 0.26 32.40 ± 0.19 58.54
FedKD [42] 86.23 ± 0.12 51.91 ± 0.28 29.47 ± 0.31 90.01 ± 0.09 67.23 ± 0.38 35.34 ± 0.33 60.03

FedAvgDBE [51] 78.10 ± 0.20 35.23 ± 0.24 16.92 ± 0.52 82.27 ± 0.45 35.21 ± 0.27 16.80 ± 0.23 44.76
FedGen [55] 55.21 ± 0.14 29.90 ± 0.17 13.76 ± 0.23 52.37 ± 0.22 24.82 ± 0.38 10.67 ± 0.54 31.12

FedProto [36] 85.63 ± 0.22 50.52 ± 0.19 28.67 ± 0.17 91.04 ± 0.16 69.28 ± 0.07 34.75 ± 0.49 59.65
FPL [11] 83.60 ± 0.01 49.10 ± 0.06 26.87 ± 0.01 90.59 ± 0.01 67.31 ± 0.01 32.95 ± 0.07 58.40

FedMRL [46] 82.55 ± 0.01 48.41 ± 0.01 26.78 ± 0.01 89.02 ± 0.00 65.97 ± 0.11 35.22 ± 0.01 57.99
FedTGP [53] 85.59 ± 0.02 47.05 ± 0.04 30.89 ± 0.00 90.49 ± 0.01 67.47 ± 0.01 40.88 ± 0.00 60.40

Local 86.33 ± 0.11 49.88 ± 0.40 31.44 ± 0.15 90.54 ± 0.12 66.57 ± 0.17 37.46 ± 0.27 60.37
FedRE 86.99 ± 0.01 52.12 ± 0.04 36.12 ± 0.21 91.06 ± 0.01 70.52 ± 0.17 42.45 ± 0.17 63.88

1 25 50 75 100
Communication Rounds

0

10

20

30

40

A
cc

ur
ac

y 
(%

)

FPL
FedALA
FedAvg
FedAvgDBE
FedGH
FedGen
FedKD
FedMRL
FedProto
FedTGP
LG-FedAvg
Local
FedRE

(a) PRA

1 25 50 75 100
Communication Rounds

0

10

20

30

40

A
cc

ur
ac

y 
(%

)

FPL
FedALA
FedAvg
FedAvgDBE
FedGH
FedGen
FedKD
FedMRL
FedProto
FedTGP
LG-FedAvg
Local
FedRE

(b) PAT

Figure 10: Accuracy (%) comparison between distinct communication rounds on the TinyImageNet
dataset in the model-homogeneous FL setting in both the PRA and PAT settings.

19



NeurIPS Paper Checklist617

1. Claims618

Question: Do the main claims made in the abstract and introduction accurately reflect the619

paper’s contributions and scope?620

Answer: [Yes]621

Justification: We highlight our contributions in the Introduction (as detailed in Section 1).622

Guidelines:623

• The answer NA means that the abstract and introduction do not include the claims624

made in the paper.625

• The abstract and/or introduction should clearly state the claims made, including the626

contributions made in the paper and important assumptions and limitations. A No or627

NA answer to this question will not be perceived well by the reviewers.628

• The claims made should match theoretical and experimental results, and reflect how629

much the results can be expected to generalize to other settings.630

• It is fine to include aspirational goals as motivation as long as it is clear that these goals631

are not attained by the paper.632

2. Limitations633

Question: Does the paper discuss the limitations of the work performed by the authors?634

Answer: [Yes]635

Justification: The limitations of this work are discussed in Appendix A.636

Guidelines:637

• The answer NA means that the paper has no limitation while the answer No means that638

the paper has limitations, but those are not discussed in the paper.639

• The authors are encouraged to create a separate "Limitations" section in their paper.640

• The paper should point out any strong assumptions and how robust the results are to641

violations of these assumptions (e.g., independence assumptions, noiseless settings,642

model well-specification, asymptotic approximations only holding locally). The authors643

should reflect on how these assumptions might be violated in practice and what the644

implications would be.645

• The authors should reflect on the scope of the claims made, e.g., if the approach was646

only tested on a few datasets or with a few runs. In general, empirical results often647

depend on implicit assumptions, which should be articulated.648

• The authors should reflect on the factors that influence the performance of the approach.649

For example, a facial recognition algorithm may perform poorly when image resolution650

is low or images are taken in low lighting. Or a speech-to-text system might not be651

used reliably to provide closed captions for online lectures because it fails to handle652

technical jargon.653

• The authors should discuss the computational efficiency of the proposed algorithms654

and how they scale with dataset size.655

• If applicable, the authors should discuss possible limitations of their approach to656

address problems of privacy and fairness.657

• While the authors might fear that complete honesty about limitations might be used by658

reviewers as grounds for rejection, a worse outcome might be that reviewers discover659

limitations that aren’t acknowledged in the paper. The authors should use their best660

judgment and recognize that individual actions in favor of transparency play an impor-661

tant role in developing norms that preserve the integrity of the community. Reviewers662

will be specifically instructed to not penalize honesty concerning limitations.663

3. Theory assumptions and proofs664

Question: For each theoretical result, does the paper provide the full set of assumptions and665

a complete (and correct) proof?666

Answer: [Yes]667

20



Justification: We present the main theoretical conclusion regarding convergence in Section668

4.4 (Convergence Analysis). The corresponding detailed proof is provided in Appendix C.669

Guidelines:670

• The answer NA means that the paper does not include theoretical results.671

• All the theorems, formulas, and proofs in the paper should be numbered and cross-672

referenced.673

• All assumptions should be clearly stated or referenced in the statement of any theorems.674

• The proofs can either appear in the main paper or the supplemental material, but if675

they appear in the supplemental material, the authors are encouraged to provide a short676

proof sketch to provide intuition.677

• Inversely, any informal proof provided in the core of the paper should be complemented678

by formal proofs provided in appendix or supplemental material.679

• Theorems and Lemmas that the proof relies upon should be properly referenced.680

4. Experimental result reproducibility681

Question: Does the paper fully disclose all the information needed to reproduce the main ex-682

perimental results of the paper to the extent that it affects the main claims and/or conclusions683

of the paper (regardless of whether the code and data are provided or not)?684

Answer: [Yes]685

Justification: We describe the experimental setup in Section 5.1, with further details provided686

in Appendix D.687

Guidelines:688

• The answer NA means that the paper does not include experiments.689

• If the paper includes experiments, a No answer to this question will not be perceived690

well by the reviewers: Making the paper reproducible is important, regardless of691

whether the code and data are provided or not.692

• If the contribution is a dataset and/or model, the authors should describe the steps taken693

to make their results reproducible or verifiable.694

• Depending on the contribution, reproducibility can be accomplished in various ways.695

For example, if the contribution is a novel architecture, describing the architecture fully696

might suffice, or if the contribution is a specific model and empirical evaluation, it may697

be necessary to either make it possible for others to replicate the model with the same698

dataset, or provide access to the model. In general. releasing code and data is often699

one good way to accomplish this, but reproducibility can also be provided via detailed700

instructions for how to replicate the results, access to a hosted model (e.g., in the case701

of a large language model), releasing of a model checkpoint, or other means that are702

appropriate to the research performed.703

• While NeurIPS does not require releasing code, the conference does require all submis-704

sions to provide some reasonable avenue for reproducibility, which may depend on the705

nature of the contribution. For example706

(a) If the contribution is primarily a new algorithm, the paper should make it clear how707

to reproduce that algorithm.708

(b) If the contribution is primarily a new model architecture, the paper should describe709

the architecture clearly and fully.710

(c) If the contribution is a new model (e.g., a large language model), then there should711

either be a way to access this model for reproducing the results or a way to reproduce712

the model (e.g., with an open-source dataset or instructions for how to construct713

the dataset).714

(d) We recognize that reproducibility may be tricky in some cases, in which case715

authors are welcome to describe the particular way they provide for reproducibility.716

In the case of closed-source models, it may be that access to the model is limited in717

some way (e.g., to registered users), but it should be possible for other researchers718

to have some path to reproducing or verifying the results.719

5. Open access to data and code720

21



Question: Does the paper provide open access to the data and code, with sufficient instruc-721

tions to faithfully reproduce the main experimental results, as described in supplemental722

material?723

Answer: [Yes]724

Justification: We utilize three benchmark datasets, i.e., CIFAR-10 [15], CIFAR-100 [15],725

and TinyImageNet [16], all of which are publicly available. Our codes are available at726

https://anonymous.4open.science/r/FedREx.727

Guidelines:728

• The answer NA means that paper does not include experiments requiring code.729

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/730

public/guides/CodeSubmissionPolicy) for more details.731

• While we encourage the release of code and data, we understand that this might not be732

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not733

including code, unless this is central to the contribution (e.g., for a new open-source734

benchmark).735

• The instructions should contain the exact command and environment needed to run to736

reproduce the results. See the NeurIPS code and data submission guidelines (https:737

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.738

• The authors should provide instructions on data access and preparation, including how739

to access the raw data, preprocessed data, intermediate data, and generated data, etc.740

• The authors should provide scripts to reproduce all experimental results for the new741

proposed method and baselines. If only a subset of experiments are reproducible, they742

should state which ones are omitted from the script and why.743

• At submission time, to preserve anonymity, the authors should release anonymized744

versions (if applicable).745

• Providing as much information as possible in supplemental material (appended to the746

paper) is recommended, but including URLs to data and code is permitted.747

6. Experimental setting/details748

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-749

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the750

results?751

Answer: [Yes]752

Justification: We describe the experimental setup in Section 5.1, with further details provided753

in Appendix D.754

Guidelines:755

• The answer NA means that the paper does not include experiments.756

• The experimental setting should be presented in the core of the paper to a level of detail757

that is necessary to appreciate the results and make sense of them.758

• The full details can be provided either with the code, in appendix, or as supplemental759

material.760

7. Experiment statistical significance761

Question: Does the paper report error bars suitably and correctly defined or other appropriate762

information about the statistical significance of the experiments?763

Answer: [Yes]764

Justification: Table 1 and Table 10 (see Appendix F.4) report the results as the mean and765

standard deviation over three random trials.766

Guidelines:767

• The answer NA means that the paper does not include experiments.768

• The authors should answer "Yes" if the results are accompanied by error bars, confi-769

dence intervals, or statistical significance tests, at least for the experiments that support770

the main claims of the paper.771
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• The factors of variability that the error bars are capturing should be clearly stated (for772

example, train/test split, initialization, random drawing of some parameter, or overall773

run with given experimental conditions).774

• The method for calculating the error bars should be explained (closed form formula,775

call to a library function, bootstrap, etc.)776

• The assumptions made should be given (e.g., Normally distributed errors).777

• It should be clear whether the error bar is the standard deviation or the standard error778

of the mean.779

• It is OK to report 1-sigma error bars, but one should state it. The authors should780

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis781

of Normality of errors is not verified.782

• For asymmetric distributions, the authors should be careful not to show in tables or783

figures symmetric error bars that would yield results that are out of range (e.g. negative784

error rates).785

• If error bars are reported in tables or plots, The authors should explain in the text how786

they were calculated and reference the corresponding figures or tables in the text.787

8. Experiments compute resources788

Question: For each experiment, does the paper provide sufficient information on the com-789

puter resources (type of compute workers, memory, time of execution) needed to reproduce790

the experiments?791

Answer: [Yes]792

Justification: The computational resources used in this work are described in Appendix D793

and Table 7.794

Guidelines:795

• The answer NA means that the paper does not include experiments.796

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,797

or cloud provider, including relevant memory and storage.798

• The paper should provide the amount of compute required for each of the individual799

experimental runs as well as estimate the total compute.800

• The paper should disclose whether the full research project required more compute801

than the experiments reported in the paper (e.g., preliminary or failed experiments that802

didn’t make it into the paper).803

9. Code of ethics804

Question: Does the research conducted in the paper conform, in every respect, with the805

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?806

Answer: [Yes]807

Justification: This work has been conducted in accordance with the NeurIPS Code of Ethics.808

Guidelines:809

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.810

• If the authors answer No, they should explain the special circumstances that require a811

deviation from the Code of Ethics.812

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-813

eration due to laws or regulations in their jurisdiction).814

10. Broader impacts815

Question: Does the paper discuss both potential positive societal impacts and negative816

societal impacts of the work performed?817

Answer: [Yes]818

Justification: The broader impacts of this work are discussed in Appendix A.819

Guidelines:820

• The answer NA means that there is no societal impact of the work performed.821
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• If the authors answer NA or No, they should explain why their work has no societal822

impact or why the paper does not address societal impact.823

• Examples of negative societal impacts include potential malicious or unintended uses824

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations825

(e.g., deployment of technologies that could make decisions that unfairly impact specific826

groups), privacy considerations, and security considerations.827

• The conference expects that many papers will be foundational research and not tied828

to particular applications, let alone deployments. However, if there is a direct path to829

any negative applications, the authors should point it out. For example, it is legitimate830

to point out that an improvement in the quality of generative models could be used to831

generate deepfakes for disinformation. On the other hand, it is not needed to point out832

that a generic algorithm for optimizing neural networks could enable people to train833

models that generate Deepfakes faster.834

• The authors should consider possible harms that could arise when the technology is835

being used as intended and functioning correctly, harms that could arise when the836

technology is being used as intended but gives incorrect results, and harms following837

from (intentional or unintentional) misuse of the technology.838

• If there are negative societal impacts, the authors could also discuss possible mitigation839

strategies (e.g., gated release of models, providing defenses in addition to attacks,840

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from841

feedback over time, improving the efficiency and accessibility of ML).842

11. Safeguards843

Question: Does the paper describe safeguards that have been put in place for responsible844

release of data or models that have a high risk for misuse (e.g., pretrained language models,845

image generators, or scraped datasets)?846

Answer: [NA]847

Justification: This work does not pose such risks.848

Guidelines:849

• The answer NA means that the paper poses no such risks.850

• Released models that have a high risk for misuse or dual-use should be released with851

necessary safeguards to allow for controlled use of the model, for example by requiring852

that users adhere to usage guidelines or restrictions to access the model or implementing853

safety filters.854

• Datasets that have been scraped from the Internet could pose safety risks. The authors855

should describe how they avoided releasing unsafe images.856

• We recognize that providing effective safeguards is challenging, and many papers do857

not require this, but we encourage authors to take this into account and make a best858

faith effort.859

12. Licenses for existing assets860

Question: Are the creators or original owners of assets (e.g., code, data, models), used in861

the paper, properly credited and are the license and terms of use explicitly mentioned and862

properly respected?863

Answer: [Yes]864

Justification: The open-source resources utilized in this work are properly cited in Sec-865

tion 5.1.866

Guidelines:867

• The answer NA means that the paper does not use existing assets.868

• The authors should cite the original paper that produced the code package or dataset.869

• The authors should state which version of the asset is used and, if possible, include a870

URL.871

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.872

• For scraped data from a particular source (e.g., website), the copyright and terms of873

service of that source should be provided.874
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• If assets are released, the license, copyright information, and terms of use in the875

package should be provided. For popular datasets, paperswithcode.com/datasets876

has curated licenses for some datasets. Their licensing guide can help determine the877

license of a dataset.878

• For existing datasets that are re-packaged, both the original license and the license of879

the derived asset (if it has changed) should be provided.880

• If this information is not available online, the authors are encouraged to reach out to881

the asset’s creators.882

13. New assets883

Question: Are new assets introduced in the paper well documented and is the documentation884

provided alongside the assets?885

Answer: [Yes]886

Justification: We have released our codes and a detailed README file in https:887

//anonymous.4open.science/r/FedREx.888

Guidelines:889

• The answer NA means that the paper does not release new assets.890

• Researchers should communicate the details of the dataset/code/model as part of their891

submissions via structured templates. This includes details about training, license,892

limitations, etc.893

• The paper should discuss whether and how consent was obtained from people whose894

asset is used.895

• At submission time, remember to anonymize your assets (if applicable). You can either896

create an anonymized URL or include an anonymized zip file.897

14. Crowdsourcing and research with human subjects898

Question: For crowdsourcing experiments and research with human subjects, does the paper899

include the full text of instructions given to participants and screenshots, if applicable, as900

well as details about compensation (if any)?901

Answer: [NA]902

Justification: This work does not involve crowdsourcing and research with human subjects.903

Guidelines:904

• The answer NA means that the paper does not involve crowdsourcing nor research with905

human subjects.906

• Including this information in the supplemental material is fine, but if the main contribu-907

tion of the paper involves human subjects, then as much detail as possible should be908

included in the main paper.909

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,910

or other labor should be paid at least the minimum wage in the country of the data911

collector.912

15. Institutional review board (IRB) approvals or equivalent for research with human913

subjects914

Question: Does the paper describe potential risks incurred by study participants, whether915

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)916

approvals (or an equivalent approval/review based on the requirements of your country or917

institution) were obtained?918

Answer: [NA]919

Justification: This work does not involve crowdsourcing and research with human subjects.920

Guidelines:921

• The answer NA means that the paper does not involve crowdsourcing nor research with922

human subjects.923

• Depending on the country in which research is conducted, IRB approval (or equivalent)924

may be required for any human subjects research. If you obtained IRB approval, you925

should clearly state this in the paper.926
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• We recognize that the procedures for this may vary significantly between institutions927

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the928

guidelines for their institution.929

• For initial submissions, do not include any information that would break anonymity (if930

applicable), such as the institution conducting the review.931

16. Declaration of LLM usage932

Question: Does the paper describe the usage of LLMs if it is an important, original, or933

non-standard component of the core methods in this research? Note that if the LLM is used934

only for writing, editing, or formatting purposes and does not impact the core methodology,935

scientific rigorousness, or originality of the research, declaration is not required.936

Answer: [NA]937

Justification: The LLM is used only for writing, editing, or formatting purposes.938

Guidelines:939

• The answer NA means that the core method development in this research does not940

involve LLMs as any important, original, or non-standard components.941

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)942

for what should or should not be described.943
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