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Abstract

Transfer learning aims to facilitate the learning of a target domain by transferring1

knowledge from a source domain. The source domain typically contains semanti-2

cally meaningful samples (e.g., images) to facilitate effective knowledge transfer.3

However, a recent study observes that the noise domain constructed from simple4

distributions (e.g., Gaussian distributions) can serve as a surrogate source domain5

in the semi-supervised setting, where only a small portion of target samples are6

labeled while most remain unlabeled. Based on this surprising observation, we7

formulate a novel problem termed Semi-Supervised Noise Adaptation (SSNA),8

which aims to leverage a synthetic noise domain to improve the generalization9

performance of the target domain. To address this problem, we first establish a10

generalization bound characterizing the effect of the noise domain on generaliza-11

tion, based on which we propose a Noise Adaptation Framework (NAF). Extensive12

experiments conducted on five benchmark datasets demonstrate that NAF effec-13

tively utilizes the noise domain to tighten the generalization bound of the target14

domain, thereby achieving improved performance. The codes are available at15

https://anonymous.4open.science/r/SSNA.16

1 Introduction17

Transfer Learning (TL) [36, 48] aims to transfer knowledge from a label-rich source domain to a18

related but label-scarce target domain. Most TL approaches have been proposed [36, 11, 23, 48, 2],19

demonstrating substantial progress in various practical applications [19, 50, 34, 38]. While the source20

and target domains often exhibit distributional divergence, the source domain typically contains21

semantically meaningful samples (e.g., images, text, or audio) that provide a crucial foundation22

for effective knowledge transfer. However, a recent study [49] has made a surprising finding:23

Noise sampled from simple distributions (e.g., Gaussian distributions), can also serve as a viable24

source domain, provided that its discriminability and transferability are preserved. Although noise25

is generally viewed as semantically meaningless and even detrimental, empirical evidence has26

demonstrated that knowledge can be transferred from the source domain to the target domain in27

the Semi-Supervised Learning (SSL) setting, where most target samples are unlabeled and only a28

small subset is labeled. This observation is particularly valuable, as concerns related to privacy,29

confidentiality, and copyright often hinder the acquisition of feasible source domains. However, this30

study has two key limitations: (i) it lacks a generalization bound analysis explaining why the noise31

domain improves generalization; and (ii) its experiments omit standard semi-supervised benchmark32

datasets such as CIFAR-10/100 [25] and ImageNet [12], limiting the generalizability of its findings.33

Motivated by those limitations, we formalize a novel problem termed Semi-Supervised Noise Adap-34

tation (SSNA), as illustrated in Figure 1. Under the SSNA setting, we define a target domain and a35

noise domain. The target domain comprises a small protion of labeled samples, with most remain-36
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Figure 1: SSNA: The target domain includes a lim-
ited number of labeled samples, with most remain-
ing unlabeled, while the noise domain is generated
from random distributions. Noise categories, lack-
ing semantic meaning, are mapped one-to-one to
target categories (see solid arrows). The goal is
to improve the generalization performance of the
target domain by utilizing noise.
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Figure 2: Accuracy (%) of ERM and NAF on
five benchmark datasets, i.e., CIFAR-10 [25],
CIFAR-100 [25], DTD [8], Caltech-101 [14],
and ImageNet [12], using ResNet-18 [21]. NAF
consistently outperforms ERM across all the
datasets, demonstrating the effectiveness of NAF
in transferring knowledge from the noise domain
to the target one.

ing unlabeled. In contrast, the noise domain is generated from random distributions and serves as37

a surrogate source domain. Since noise inherently lacks semantic meanings, we follow [49] and38

randomly and uniquely assign the category indices from the target domain to each noise category39

in a one-to-one manner (see solid arrow in Figure 1). Accordingly, the learning objectives in both40

domains are aligned. The objective of SSNA is to enhance the generalization performance of the41

target domain by leveraging both labeled and unlabeled target samples, as well as noise.42

To address this problem, we first establish a generalization bound characterizing the effect of the43

noise domain on generalization. Based on this theoretical insight, we propose a Noise Adaptation44

Framework (NAF) that projects target samples and noise into a domain-invariant representation45

space by minimizing the empirical risks of both domains and reducing their distributional divergence.46

Optimizing NAF’s objective effectively tightens the target domain’s generalization bound, thereby47

improving its generalization performance. Experimental results on five benchmark datasets validate48

the effectiveness of NAF. As shown in Figure 2, NAF outperforms ERM by up to 12.35%, 7.61%,49

4.38%, and 2.73% on CIFAR-10, CIFAR-100, DTD, and Caltech-101, respectively, with 4 labeled50

samples per category. Moreover, on the more challenging ImageNet dataset with 1000 categories and51

100 labeled samples per category, NAF achieves an improvement of up to 0.96% over ERM.52

The main contributions of this paper are summarized as follows. (1) We introduce the SSNA problem,53

providing a fresh perspective on the utilization of noise. (2) We provide a generalization bound54

of SSNA that characterizes the impact of the noise domain on generalization, based on which we55

propose the NAF. (3) Extensive experiments on five benchmark datasets demonstrate that NAF can56

effectively tighten the generalization bound of the target domain.57

2 Related Work58

Our work is closely related to TL [36, 48] and semi-supervised learning (SSL) [43, 20], both of which59

aim to leverage unlabeled samples to improve the generalization performance of the target domain.60

TL enhances generalization by leveraging abundant labeled source samples to guide the learning61

of unlabeled target samples. [5, 4] introduce the theoretical foundations for TL by establishing a62

generalization bound for the target domain. Based on this theoretical bound, a key objective in TL63

is to minimize the distributional discrepancy between the source and target domains. To this end,64

various distribution alignment methods have been proposed, primarily leveraging Maximum Mean65

Discrepancy (MMD) [18] and Adversarial Domain Alignment (ADA) [15]. For instance, several66

studies [32, 30, 29, 50, 7] propose MMD variants to quantify the distributional divergence between67

the source and target domains. Another line of research [15, 31, 28, 16, 39, 34] explores diverse68

forms of ADA, which mitigate this divergence via a min-max game between a feature extractor69

and a domain discriminator. Furthermore, several studies [19, 1, 27, 38] utilize other distributional70
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alignment mechanisms to facilitate cross-domain knowledge transfer. Note that most of the above71

studies, the source domain consists of semantically meaningful samples (e.g., images, text, or audio).72

Hence, research in this line has primarily focused on developing state-of-the-art TL approaches73

through increasingly sophisticated distribution alignment strategies.74

SSL utilizes a few labeled target samples to guide the learning of unlabeled target samples. Many75

methods [46, 40, 51, 6, 45] utilize data augmentation and pseudo-label refinement mechanisms,76

where the former improves sample diversity and the latter mitigates pseudo-label bias. For instance,77

UDA [46] strengthens consistency training by replacing simple noise injection with strong data78

augmentation. FixMatch [40] generates pseudo-labels from weakly augmented samples and enforces79

consistency with their strongly augmented counterparts. FlexMatch [51] further refines this method80

by dynamically adjusting category-specific confidence thresholds. To alleviate pseudo-label bias,81

DST [6] decouples pseudo-label generation and utilization with two independent classifiers while82

adversarially optimizing the representation extractor. DebiasMatch [45] uses causal inference to83

adjust decision margins based on pseudo-label imbalance. Another line of research [17, 10, 52]84

focuses on directly guiding the learning of unlabeled samples. A recent example is LERM [52],85

which utilizes category-specific label-encodings to guide the learning of unlabeled samples.86

Our work is primarily motivated by [49], which reveals that noise drawn from simple distributions87

(e.g., Gaussian distributions) contains transferable knowledge, as long as its discriminability and88

transferability are preserved. This may initially appear counter-intuitive, as noise is typically viewed89

as semantically meaningless and potentially harmful. In practice, however, several studies [3, 26,90

22, 44, 41, 33] have explored the potential of noise in addressing diverse machine learning tasks.91

For example, [3] leverages noise to pre-train a visual representation model using a contrastive92

loss, resulting in better downstream performance. Another line of research [22, 44] builds on the93

concept of positive-incentive noise introduced by [26], leveraging it to augment original samples or94

representations, aiming to enhance generalization performance. Moreover, [33, 41] propose utilizing95

noise to tackle the distribution heterogeneity issue across clients in federated learning. As an example,96

[41] randomly generates noise as source samples and reduces the distributional divergence between97

the noise and target samples on each client in a supervised setting.98

In summary, unlike the aforementioned studies, our work explores how the noise domain can be99

leveraged to facilitate the learning of unlabeled target samples in SSL within a TL framework.100

3 Problem Formulation101

In this section, we formulate the SSNA problem. Let C = {0, . . . , C − 1} be the category index102

set, where C denotes the total number of categories. Let E and X denote the noise space (e.g., a103

d-dimensional feature space) and the sample space (e.g., a pixel-level image space), respectively.104

Definition 1. (Target Domain). The target domain is defined as Dt = Dl ∪ Du ∪ De, where all105

samples lie in the sample space X . Specifically, Dl = {(xl
i, y

l
i)}

nl
i=1 consists of labeled target106

samples, where each sample xl
i is associated with a semantic category (e.g., “dog”) that is mapped107

to an integer label yli ∈ C. Du = {xu
i }

nu
i=1 and De = {xe

i}
ne
i=1 include the unlabeled and test target108

samples, respectively. Furthermore, the number of labeled target samples is much smaller than that109

of the unlabeled target samples, i.e., nl ≪ nu.110

Definition 2. (Noise Domain). The noise domain is defined as Dn = {(ni, yi)}ni=1, where each111

noise ni is drawn from a random distribution over E . The corresponding label yi ∈ C serves purely112

as an integer identifier without any semantic information.113

Definition 3. (SSNA). Given a target domain Dt, the objective of SSNA is to train a high-quality114

model hθ∗ using samples from Dl, Du, and noise from Dn, and then apply hθ∗ to classify the samples115

in De for evaluation.116

4 Generalization Bound Analysis and Empirical Verification117

In this section, we first present a generalization bound analysis for SSNA and then design the NAF to118

empirically verify that utilizing the noise domain can tighten this bound.119
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4.1 Generalization Bound Analysis120

Before presenting the generalization bound for SSNA, we first address two fundamental questions121

based on the findings in [49]:122

(i) What knowledge is contained in the noise domain that can benefit the target domain?123

(ii) Is the semi-supervised setting in the target domain necessary?124

Regarding question (i), although the noise domain is constructed by randomly sampling from a noise125

space, the noise and target domains share a common category index set (see Figure 3), implying126

that they are aligned in terms of classification objectives. Classifying noise into distinct category127

indices induces a discriminative structure, which encodes discriminative knowledge that can be128

leveraged in the target domain. As for question (ii), without labeled target samples to align the129

category indices between the noise and target domains, a classifier trained solely on the noise domain130

cannot effectively classify target samples. This is because the noise is randomly generated and does131

not originate from the same sample space as the target domain, lacking any inherent relationship with132

the target samples. Consequently, a few labeled target samples are needed to bridge the two domains133

by aligning their category indices, enabling the effective transfer of discriminative knowledge from134

the noise domain to the target one. (see Q4 in Section 5.3 for a detailed analysis).135

Next, we apply the theoretical framework of semi-supervised TL in [4] to analyze the generalization136

bound of SSNA. Since the noise does not originate from the same sample space as the target domain,137

which makes it infeasible to directly measure the distributional discrepancy between them. To address138

this issue, we project both domains into a domain-shared representation space Z and derive the139

generalization bound for the target domain within this space. Specifically, let F be a hypothesis140

space over Z with VC dimension d. We denote by P̃t and P̃n the target and noise distributions over141

Z , respectively. Given a data set D = Dl ∪ Dn of size m, where Dl consists of βm (β ∈ [0, 1])142

i.i.d. labeled samples from P̃t while Dn comprises (1− β)m i.i.d. labeled samples from P̃n. Define143

ϵ̂α(f) = αϵ̂t(f) + (1 − α)ϵ̂n(f) (α ∈ [0, 1]) as the convex combination of the empirical target144

error ϵ̂t(f) and empirical noise error ϵ̂n(f), measured on Dl and Dn, respectively. Based on those145

notations, we present the generalization bound of SSNA in Theorem 1.146

Theorem 1. (Generalization Bound of SSNA) Let f̂ = argminf∈F ϵ̂α(f) be the empirical minimizer147

of ϵ̂α(f) on D, and let f∗
t = argminf∈F ϵt(f) be the target error minimizer. Then, for any δ ∈ (0, 1),148

the expected error of f̂ is bounded with probability at least 1− δ by149

ϵt(f̂) ≤ ϵt(f
∗
t )+2(1−α)

(1
2
dH∆H(P̃n, P̃t)+ λ̂

)
+4

√
α2

β
+
(1−α)2

1−β

√
2d log(2(m+1))+2 log( 8δ )

m
,

where dH∆H(P̃n, P̃t) is the H-divergence between the noise and target domains, and λ̂ :=150

minf∈F ϵ̂n(f) + ϵ̂t(f).151

Proof sketch. This theorem is built upon Theorem 3 in [4], and the fact that λ := minf∈F ϵn(f) +152

ϵt(f) ≤ λ̂ := minf∈F ϵ̂n(f) + ϵ̂t(f).153

Based on Theorem 1, the target error ϵt(f̂) is primarily upper-bounded by the empirical target154

error ϵ̂t(f̂), the empirical noise error ϵ̂n(f̂), and the distributional discrepancy dH∆H(P̃n, P̃t). This155

indicates that if a projected noise domain can effectively reduce both terms ϵ̂n(f̂) and dH∆H(P̃n, P̃t),156

it will lead to a tighter generalization bound for the target domain. Note that the term dH∆H(P̃n, P̃t)157

measures the distributional discrepancy between the projected noise and target domains in the158

representation space Z (see Figure 3). Therefore, we do not impose constraints on the original159

distribution of the noise domain, which can be arbitrarily constructed as long as its projection satisfies160

the required properties. Next, we empirically verify the above theoretical insight.161

4.2 Empirical Verification of Theorem 1162

To empirically verify Theorem 1, we design the NAF guided by this theorem and report several key163

empirical results.164
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Figure 3: Under the SSNA setting, although the noise domain is generated from a random distribution,
it shares a common set of category indices with the target domain. By assigning noise to distinct
category indices, a discriminative structure is introduced, which encodes discriminative knowledge
that can be transferred to the target domain. Furthermore, aligning the projected distributions of the
noise and target domains in the representation space is vital for effective knowledge transfer.

Building on Theorem 1, the generalization bound of the expected target error ϵt(f̂) can be mini-165

mized by jointly reducing the empirical target error ϵ̂t(f̂), the empirical noise error ϵ̂n(f̂), and the166

distributional discrepancy dH∆H(P̃n, P̃t) in Z . Accordingly, we design the NAF to project target167

samples and noise into Z by minimizing three components: (i) Lt: the empirical risk of labeled target168

samples, corresponding to ϵ̂t(f̂); (ii) Ln: the empirical risk of noise, corresponding to ϵ̂n(f̂); and169

(iii) Ln,t: the distributional discrepancy between projected domains, whose minimization implicitly170

reduces dH∆H(P̃n, P̃t). Thus, the optimization objective of the NAF is formulated as follows:171

min
gt,gn,f

Lt(Dl; gt, f) + αLn(Dn; gn, f) + βLn,t(Dl,Du,Dn; gt, gn, f), (1)

where gt(·) is a representation extractor projecting target samples from X to Z , gn(·) is a noise172

projector mapping noise from N to Z , f(·) is a classifier (see Figure 3), and α, β are two positive173

trade-off parameters to control the importance of Ln and Ln,t, respectively. By optimizing the174

problem (1), the generalization bound of the target domain can be effectively tightened, thereby175

improving the generalization performance.176

In the implementation, the cross-entropy loss is used to instantiate Lt and Ln. To implement Ln,t,177

we design a Negative Domain Similarity (NDS) mechanism, which quantifies the distributional178

discrepancy between the projected target and noise domains by calculating the cosine similarity179

between their global means and the sum of cosine similarities between their corresponding category-180

wise means, followed by negating the total similarity score to measure the degree of divergence. Also,181

we use the classifier f(·) to assign pseudo-labels to unlabeled target samples and iteratively update182

them to estimate category-wise means. Involving those unlabeled samples in distribution alignment is183

crucial for guiding their learning and enhancing the generalization performance of the target domain184

(see the subsequent representation visualization analysis). Alternative mechanisms for modeling185

distributional divergence are also analyzed in Q6 of Section 5.3.186

Next, we present empirical results showing that NAF tightens the target domain’s generalization187

bound versus the ERM baseline using only Lt. Figure 4a plots the loss trajectories of Lt, Ln, and188

Ln,t, along with the test accuracy curves for both ERM and NAF on CIFAR-100 with ResNet-18,189

respectively. Several insightful observations can be drawn. (1) Both methods demonstrate notable190

reductions in Lt, as it is explicitly minimized in their respective objective functions. (2) The values191

of Ln and Ln,t in ERM are consistently higher than those in NAF, which is reasonable since ERM192

does not explicitly minimize them. (3) When Lt is jointly minimized with Ln and Ln,t in NAF,193

the resulting accuracy curve shows a significant improvement over that of ERM. This indicates194

that simultaneously minimizing those losses within a unified framework can effectively tighten the195

generalization bound of the target domain, thereby improving its generalization performance. This196

observation is in line with the theoretical result in Theorem 1.197
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Figure 4: Empirical Results of NAF. (a) Training loss and accuracy curves for ERM and NAF on
CIFAR-100 with ResNet-18. Lt denotes labeled target risk, Ln is the noise risk, and Ln,t measures
domain discrepancy. (b) Representations learned by ERM on CIFAR-10 with ResNet-18, where
■’ indicates noise; •’ and ‘◦’ represent labeled and unlabeled target samples, respectively. (c)
Representations learned by NAF on CIFAR-10 with ResNet-18, with the same symbol scheme as in
(b). Colors correspond to different categories.

Furthermore, we employ the t-SNE technique [42] to visualize the representations learned by ERM198

and NAF on CIFAR-10 with ResNet-18. As shown in Figure 4b, the noise representations of each199

category align closely with the target representations belonging to the same category, while noise200

representations from different categories remain well-separated. Compared to ERM, as plotted in201

Figure 4c, NAF effectively improves the discriminability of the target domain. The improvement202

mainly stems from jointly minimizing Ln and Ln,t. The former ensures the discriminability of the203

noise domain, while the latter transfers this discriminability to guide the learning of numerous204

unlabeled target samples, thereby improving the target domain’s generalization performance.205

5 Experiments206

In this section, we evaluate the proposed NAF on five benchmark datasets.207

5.1 Experimental Setup208

Datasets We use five benchmark datasets: CIFAR-10 [25], CIFAR-100 [25], DTD [8], Caltech-209

101 [14], and ImageNet [12]. CIFAR-10 and CIFAR-100 consist of 60,000 images across 10 and210

100 categories, respectively. DTD includes 5,640 textural images from 47 categories, Caltech-101211

contains images from 101 object categories plus a background, and ImageNet comprises nearly one212

million images spanning 1,000 categories. For the first four datasets, we randomly select 4 labeled213

samples from each category in the training set, with the remaining samples serving as unlabeled214

samples. As for the ImageNet dataset, we randomly choose 100 labeled samples per category in the215

training set, with the rest treated as unlabeled samples.216

Noise Domain Construction. We randomly construct a noise domain in a 1024-dimensional space.217

Specifically, we first sample C category means from a standard Gaussian distribution, where C218

corresponds to the number of categories in the target domain. For each category, we assign an identity219

covariance matrix. Based on each class mean and its corresponding covariance matrix, we then220

sample 50 noise from the associated Gaussian distribution to form the noise domain.221

Implementation Details. We implement the proposed NAF using the TLlib library [23] and apply222

weak and strong augmentation techniques [9] in the target domain. Also, we directly treat both weakly223

and strongly augmented target samples uniformly as target samples, omitting refined processing224

strategies like those in FlexMatch [51]. This allows us to focus on the impact of the noise domain225

with advanced mechanisms left for future work. In NAF, it is necessary to calculate the category226

mean for each category. To address the mini-batch issue, we follow [47] and employ an exponential227

moving average to update the category means as follows: mc
n = λ · mc

o + (1 − λ) · mc
b, where228

mc
o and mc

n denote the previous and updated c-th category means, respectively, and mc
b is the c-th229

category mean calculated from the current mini-batch. The hyperparameter λ is detailed in Table 6 in230

Appendix B. In addition, we implement the representation extractor gt using ResNet [21] backbones231

pre-trained on ImageNet for all datasets, except ImageNet itself, where the backbone is trained from232
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scratch. The noise projector gn is implemented as a non-linear layer with ReLU activation [35], and233

the classifier f is a single linear layer. Furthermore, we utilize mini-batch SGD with a momentum of234

0.9 as the optimizer, setting batch sizes to 32 for CIFAR-10 and CIFAR-100, DTD, and Caltech-101,235

and 128 for ImageNet. Additional settings are detailed in Appendix B. All experiments are conducted236

on NVIDIA V100 series GPUs.237

Evaluation Metric. We evaluate performance using the classification accuracy in De. For a fair238

comparison, we report the average accuracy of the last-epoch after 20 epochs for all baselines,239

calculated over three random experiments and its standard error [13].240

5.2 Main Experiments241

In this section, we conduct extensive main experiments to investigate the following research questions242

Q1-Q3.243

Q1: Is NAF effectively improving the performance of the target domain? Table 1 presents244

the results on CIFAR-10, CIFAR-100, DTD, and Caltech-101 using ResNet-18 and ResNet-50.245

As shown, NAF consistently outperforms ERM across all datasets. Specifically, NAF achieves246

significant performance improvements of 12.35% and 15.15% over ERM using ResNet-18 and247

ResNet-50 on CIFAR-10, respectively. Those results demonstrate that NAF can effectively enhance248

the generalization performance of the target domain by leveraging the noise domain. This is because249

NAF tightens the generalization bound of the target domain by enhancing the discriminability of both250

domains and aligning their distributions within the domain-shared representation space. As a result,251

the discriminative knowledge of the source domain is effectively transferred to the target domain.252

Table 1: Accuracy (%) comparison on CIFAR-10 and CIFAR-100, DTD, and Caltech-101 using
ResNet-18 and ResNet-50, respectively. Here, ∆ indicates the performance gain introduced by NAF.

Datasets CIFAR-10 CIFAR-100 DTD Caltech-101

ResNet-18 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ERM 55.55±2.01 92.85±0.37 41.43±0.40 71.40±0.19 45.80±0.39 74.26±0.26 79.20±0.70 93.29±0.18
NAF 67.90±2.28 96.38±0.31 49.04±0.69 80.56±0.48 50.18±0.94 77.98±0.46 81.94±0.62 95.01±0.21
∆ +12.35 +3.52 +7.61 +9.16 +4.38 +3.72 +2.73 +1.72

ResNet-50 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
ERM 58.83±1.83 94.25±0.58 46.71±0.70 76.53±0.63 49.56±0.50 76.65±0.29 81.99±0.41 94.70±0.15
NAF 73.98±3.21 97.01±0.64 52.82±0.52 82.16±0.37 53.97±0.72 79.68±0.22 84.41±0.62 96.14±0.02
∆ +15.15 +2.76 +6.11 +5.63 +4.41 +3.03 +2.42 +1.44

Q2: Is NAF still effective as a plug-in when combined with existing SSL methods? To investigate253

this question, we conduct experiments using six state-of-the-art (SOTA) SSL methods: UDA [46],254

FixMatch [40], FlexMatch [51], DebiasMatch [45], DST [6], and LERM [52]. NAF can be seamlessly255

integrated as a plugin into those SOTA SSL methods by incorporating Ln and Ln,t into their objective256

functions. Table 2 reports the results at the 5th, 10th, 15th, and 20th epochs on CIFAR-10 and CIFAR-257

100 using ResNet-18. We observe that incorporating NAF leads to consistent performance gains258

across all SSL methods. Specifically, NAF improves accuracy by 20.84% and 9.91% over UDA and259

FixMatch, respectively, at the 20th epoch on CIFAR-10. Those results indicate that NAF effectively260

enhances the generalization performance of SOTA methods by transferring knowledge from the noise261

domain. Additional results on DTD and Caltech-101 are offered in Appendix C.262

Q3: Is NAF still effective on ImageNet? We evaluate NAF on ImageNet with 100 labeled samples263

per category using ResNet-18 to assess its performance on a more complex dataset. NAF achieves264

an accuracy of 37.07%, outperforming ERM (36.11%) by 0.96%. This result further highlights265

NAF’s effectiveness, even on large-scale datasets with 1,000 categories, demonstrating its potential266

for addressing complex real-world challenges.267

5.3 Analysis268

In this section, we perform a series of analysis experiments to explore the research questions Q4-Q9.269

Q4: How does the impact of NAF change as the number of labeled target samples varies?270

Table 3 reports the results on CIFAR-10 using ResNet-18 with different numbers of labeled samples271

per category. We can make several insightful observations. (1) When the number of labeled target272
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Table 2: Accuracy (%) comparison on CIFAR-10 and CIFAR-100 using ResNet-18. Here, ∆ indicates
the performance gain introduced by NAF.

Datasets CIFAR-10 CIFAR-100

Epoch 5 10 15 20 Average 5 10 15 20 Average

UDA [46] 51.67±1.58 55.37±1.69 56.03±1.73 56.11±1.53 54.80±1.52 38.30±0.83 42.99±0.26 45.93±0.32 47.41±0.74 43.66±0.44
UDA + NAF 73.55±3.07 76.16±3.06 76.52±3.34 76.94±3.23 75.79±3.13 40.37±0.54 45.44±0.94 47.82±0.89 48.80±0.81 45.61±0.78

∆ +21.88 +20.78 +20.50 +20.84 +21.00 +2.07 +2.45 +1.90 +1.39 +1.95
FixMatch [40] 66.41±1.68 68.41±1.91 69.01±1.97 69.40±2.22 68.31±1.94 39.38±0.28 40.78±0.33 41.98±0.16 42.45±0.21 41.15±0.13

FixMatch + NAF 75.51±3.14 77.89±3.50 79.00±3.42 79.31±3.62 77.93±3.41 40.97±1.55 43.28±0.88 44.06±1.14 44.93±1.47 43.31±1.22
∆ +9.09 +9.48 +9.99 +9.91 +9.62 +1.59 +2.50 +2.08 +2.48 +2.17

FlexMatch [51] 73.61±1.06 79.85±0.54 83.46±0.65 84.53±0.57 80.36±0.60 45.41±1.49 50.28±1.99 51.91±1.15 54.30±1.20 50.48±1.45
FlexMatch + NAF 79.22±1.18 82.72±0.87 84.32±0.59 84.90±0.56 82.79±0.79 48.10±1.15 52.91±1.04 54.97±0.63 55.73±0.59 52.93±0.85

∆ +5.61 +2.87 +0.87 +0.38 +2.43 +2.68 +2.62 +3.06 +1.43 +2.45
DebiasMatch [45] 68.71±1.47 77.68±0.58 79.86±1.80 82.04±1.85 77.07±1.39 46.71±0.92 51.97±0.26 54.73±0.39 56.30±0.32 52.43±0.42

DebiasMatch + NAF 76.12±1.17 80.89±0.90 82.54±0.68 83.05±0.70 80.65±0.85 49.57±0.53 54.02±0.29 56.36±0.41 57.45±0.50 54.35±0.39
∆ +7.40 +3.21 +2.68 +1.01 +3.58 +2.87 +2.05 +1.63 +1.14 +1.92

DST [6] 78.40±1.92 82.84±1.46 84.48±1.16 85.47±1.22 82.80±1.43 45.40±0.34 49.74±0.39 51.68±0.51 53.17±0.73 50.00±0.48
DST + NAF 80.70±1.22 83.46±1.42 84.87±1.58 85.53±1.63 83.64±1.46 48.73±0.41 52.28±0.77 54.10±0.76 54.93±0.89 52.51±0.70

∆ +2.29 +0.62 +0.40 +0.06 +0.84 +3.33 +2.54 +2.42 +1.77 +2.51
LERM [52] 60.03±1.88 62.42±1.99 63.81±2.09 64.77±2.07 62.76±2.00 48.10±0.47 50.13±0.46 50.83±0.34 51.66±0.27 50.18±0.38

LERM + NAF 66.01±1.71 67.34±1.67 67.83±1.74 68.00±1.61 67.30±1.68 49.42±0.19 51.06±0.34 51.65±0.40 51.97±0.53 51.03±0.34
∆ +5.98 +4.92 +4.02 +3.23 +4.54 +1.32 +0.93 +0.82 +0.31 +0.84

samples is zero, both ERM and NAF perform poorly. For ERM, the absence of labeled target samples273

hinders the effective learning of unlabeled samples, resulting in significant performance degradation.274

In NAF, since the noise is not from the same sample space as the target domain and lacks an inherent275

relationship with the target samples, its discriminative knowledge cannot be effectively transferred.276

(2) When the number of labeled target samples is non-zero, NAF consistently outperforms ERM277

across all scenarios. Those results indicate that NAF effectively leverages both the labeled target278

samples and noise to further enhance the generalization performance of the target domain.279

Table 3: Accuracy (%) comparison on CIFAR-100 using ResNet-18 with different numbers of labeled
target samples per category.

# Labeled target samples per category 0 4 8 12 16 20

ERM 0.97 42.24 54.11 58.27 61.64 63.85
NAF 1.34 49.98 59.51 62.21 64.23 66.45

Q5. How do Ln and Ln,t influence the performance of NAF? To further investigate the effec-280

tiveness of Ln and Ln,t, we examine two NAF variants: (1) NAF (w/o Ln), which ablates Ln; and281

(2) NAF (w/o Ln,t), which removes Ln,t. Additionally, ERM can be seen as a NAF variant that282

eliminates both losses. The results on CIFAR-100 using ResNet-18 are shown in Table 4. We observe283

that NAF significantly outperforms all variants, indicating that both losses are beneficial. Moreover,284

NAF (w/o Ln) outperforms NAF (w/o Ln,t), suggesting that reducing distributional divergence285

between domains is more crucial.286

Table 4: Accuracy (%) of NAF variants on CIFAR-100 using ResNet-18.
ERM NAF (w/o Ln) NAF (w/o Ln,t) NAF

42.24 47.33 40.64 49.98

Q6: How do other distribution alignment methods influence NAF? In the implementation of NAF,287

we employed NDS to quantify the distributional divergence between domains. Next, we introduce288

several alternative mechanisms for comparison. (1) Negative Sample Similarity (NSS): It takes289

the negative sum of the cosine similarities between all individual sample pairs belonging to the290

same category across domains. (2) Negative Contrastive Domain Similarity (NCDS): It utilizes a291

contrastive loss [37] to calculate a negative similarity for same-category mean pairs and a positive292

similarity for different-category mean pairs. (3) Negative Contrastive Sample Similarity (NCSS): It293

utilizes a contrastive loss [37] to compute a negative similarity for same-category sample pairs and294

a positive similarity for different-category sample pairs. (4) Euclidean Domain Distance (EDD): It295

calculates the Euclidean distance between the global means of two domains, along with the sum of296

Euclidean distances between their corresponding category-wise means. Table 5 presents the results on297

CIFAR-100 using ResNet-18. As observed, NAF (NDS) achieves the best performance, suggesting298

that NDS is an effective metric for capturing distributional divergence between domains. Conversely,299
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NAF (EDD) yields the worst performance, indicating that Euclidean distance is less suitable than300

cosine similarity for measuring distributional divergence in the domain-shared representation space.301

Therefore, we empirically adopt NDS in the implementation of NAF.302

Table 5: Accuracy (%) of NAF with various distributional alignment mechanisms on CIFAR-100
using ResNet-18.

NAF (NDS) NAF (NSS) NAF (NCDS) NAF (NCSS) NAF (EDD)

49.98 48.65 47.20 44.27 20.03

Q7: How does the amount of noise impact NAF? We vary the amount of noise per category (i.e.,303

0, 10, 50, 100, 200) to evaluate its impact on NAF. The results on CIFAR-100 using ResNet-18 are304

shown in Figure 5a. As can be observed, when the amount of noise is zero, NAF degenerates to305

ERM, resulting in poor performance. As the noise increases, the performance remains relatively306

stable, showing no noticeable improvement. When the amount of noise per category reaches 200, the307

performance slightly declines. This suggests that excessive noise may not be beneficial as it could308

increase learning difficulty.309

0 10 50 100 200
Noise Amount

40

43

46

49

52

A
cc

ur
ac

y 
(%

)

(a)

0.01 0.1 1 10 100
20

30

40

50

60

A
cc

ur
ac

y 
(%

)

(b)

0.01 0.1 1 10 100
20

30

40

50

60

A
cc

ur
ac

y 
(%

)

(c)

Figure 5: Accuracy (%) comparison on CIFAR-100 using ResNet-18 with varying (a) amounts of
noise, (b) values of α, and (c) values of β.

Q8: How do the hyper-parameters α and β influence NAF? We analyze the parameter sensitivity310

of α and β on CIFAR-100 using ResNet-18. Figures 5b and 5c present the performance of NAF311

under varying values of α and β, respectively. The results show that NAF performs well and remains312

relatively stable when α and β are close to the default value of 10. However, when either parameter313

increases to 100, a significant performance drop is observed, suggesting that overemphasizing the314

learning of the noise domain while neglecting the target domain can be detrimental.315

Q9: Is there another method to learn the noise domain within NAF in the representation316

space? In all the above experiments, we utilize a noise projector gn to learn an optimal noise domain317

distribution that aligns with the target domain distribution in the domain-shared representation space.318

As an alternative approach, we also explore learning the mean µ and standard deviation σ, and apply319

the reparameterization trick [24] to transform samples from a standard normal distribution into a320

Gaussian distribution N (µ, σ2I) in the representation space. We evaluate this method on CIFAR-10321

using ResNet-18, achieving an accuracy of 70.60%, which is comparable to the performance of NAF322

of 71.83%, and exceeds ERM by 12.45%. Those results indicate that modeling a parametric noise323

distribution via reparameterization is also a feasible and effective strategy, which may inspire further324

promising research.325

6 Conclusion326

In this paper, we formulate the SSNA problem, which leverages a synthetic noise domain to facilitate327

the learning task in the target domain. To address this problem, we first derive a generalization328

bound for the target domain that offers a theoretical understanding of how incorporating a noise329

domain can influence generalization performance. Building on this bound, we propose the NAF,330

which jointly minimizes the empirical risks on both the noise and target domains while reducing their331

distributional divergence within a domain-shared representation space. Extensive experiments on five332

benchmark datasets demonstrate that NAF effectively tightens the generalization bound of the target333

domain, resulting in improved performance. Our work explores the potential of noise domains as a334

complementary source for improving the generalization performance of the target domain. In future335

work, we intend to extend SSNA to more diverse real-world scenarios.336
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A Limitations and Broader Impacts457

Limitations. While randomly sampled noise has shown promising potential in SSNA, our exploration458

to date has focused primarily on classification tasks. Due to differences in the objectives of generative459

tasks such as text generation, directly applying the noise domain to such tasks remains non-trivial.460

Consequently, investigating the role of noise in generative modeling is a promising direction for461

future research.462

Broader Impacts. This work demonstrates the broad potential of noise as an alternative source463

domain to facilitate learning tasks in label-scarce target domains. This insight is particularly valuable464

in real-world scenarios where acquiring labeled source samples is often infeasible due to privacy465

regulations, confidentiality constraints, or copyright restrictions. Furthermore, It may offer new466

perspectives on the underlying principles of transfer learning. We expect this work to inspire more467

meaningful and in-depth research.468

B Detailed Parameter Configuration469

Table 6 outlines the detailed parameter configurations utilized in this paper. For the main experiments470

conducted in Section 5.2, we report the average classification accuracy over three independent471

runs with random seeds 0, 1, and 2 for all datasets, except for ImageNet, where we use seed 0472

exclusively due to its substantial computational demands. As for the analysis experiments performed473

in Section 5.3, we fix the random seed to 0 to strike a balance between methodological rigor and474

computational runtime, ensuring reproducibility and consistency of results.

Table 6: Detailed parameter configuration utilized in this paper.
Method Dataset Backbone α β λ learning rate iterations

NAF

CIFAR-10 / DTD ResNet-50 / ResNet-18 1 1

0.7

0.03
10000CIFAR-100 ResNet-50 / ResNet-18 10 10 0.01

Caltech-101 ResNet-50 / ResNet-18 1 10 0.003
ImageNet-1K ResNet-18 1 10 0.01 80000

LERM + NAF CIFAR-10

ResNet-18

1 1 0.99 0.03

10000Others + NA
CIFAR-10 / CIFAR-100 10 10 0.99 / 0.7 0.03 / 0.01

DTD 1 5 0.7 0.03
Caltech-101 1 10 0.7 0.003

475

C Additional Experimental Results476

We provide additional results for SOTA + NAF on DTD and Caltech-101 using ResNet-18. As477

shown in Table 7, SOTA + NAF consistently outperforms the standalone SOTA methods across most478

scenarios, further demonstrating the effectiveness of NAF in leveraging the noise domain to enhance479

the performance of the target domain.480

Table 7: Accuracy (%) comparison on DTD and Caltech-101 using ResNet-18. Here, ∆ indicates the
performance gain introduced by NAF.

Datasets DTD Caltech-101

Epoch 5 10 15 20 Average 5 10 15 20 Average

UDA [46] 46.28 ± 0.20 46.81 ± 0.10 46.90 ± 0.76 47.32 ± 0.47 46.83 ± 0.35 79.20 ± 0.81 79.61 ± 0.44 80.00 ± 0.41 80.28 ± 0.44 79.77 ± 0.51
UDA + NAF 46.88 ± 1.76 47.89 ± 1.72 49.10 ± 1.67 49.22 ± 1.51 48.27 ± 1.66 80.98 ± 0.74 81.40 ± 0.33 81.21 ± 0.36 81.43 ± 0.46 81.25 ± 0.45

∆ +0.60 +1.08 +2.20 +1.90 +1.45 +1.78 +1.79 +1.21 +1.14 +1.48
FixMatch [40] 46.51 ± 0.49 47.78 ± 0.61 48.09 ± 1.05 48.23 ± 0.88 47.65 ± 0.75 80.13 ± 0.43 80.27 ± 0.19 80.28 ± 0.34 79.99 ± 0.27 80.17 ± 0.27

FixMatch + NAF 48.85 ± 0.94 49.57 ± 0.98 50.12 ± 0.72 49.86 ± 1.07 49.60 ± 0.92 80.96 ± 0.39 80.96 ± 0.27 80.42 ± 0.17 80.42 ± 0.04 80.69 ± 0.17
∆ +2.34 +1.79 +2.04 +1.63 +1.95 +0.82 +0.70 +0.15 +0.44 +0.53

FlexMatch [51] 50.66 ± 0.36 51.29 ± 0.79 50.94 ± 0.63 50.69 ± 0.75 50.90 ± 0.63 82.74 ± 0.53 83.83 ± 0.65 83.61 ± 0.49 83.70 ± 0.25 83.47 ± 0.47
FlexMatch + NAF 50.51 ± 0.88 50.87 ± 0.86 51.03 ± 0.83 51.35 ± 0.82 50.94 ± 0.84 83.22 ± 0.60 84.08 ± 0.51 83.74 ± 0.54 83.77 ± 0.37 83.70 ± 0.50

∆ -0.14 -0.43 +0.09 +0.66 +0.04 +0.48 +0.26 +0.13 +0.08 +0.23
DebiasMatch [45] 45.67 ± 0.60 45.99 ± 0.66 45.46 ± 0.61 46.42 ± 0.64 45.89 ± 0.63 80.87 ± 0.17 81.09 ± 0.28 81.29 ± 0.21 81.60 ± 0.21 81.21 ± 0.07

DebiasMatch + NAF 49.01 ± 1.07 49.79 ± 0.81 50.02 ± 0.95 50.09 ± 0.91 49.73 ± 0.93 82.46 ± 0.55 82.62 ± 0.46 82.77 ± 0.51 82.60 ± 0.17 82.61 ± 0.38
∆ +3.33 +3.79 +4.56 +3.67 +3.84 +1.58 +1.53 +1.48 +1.00 +1.40

DST [6] 49.84 ± 0.63 51.68 ± 1.17 52.27 ± 0.72 51.93 ± 0.99 51.43 ± 0.87 80.75 ± 0.64 81.85 ± 0.46 82.19 ± 0.42 82.16 ± 0.42 81.74 ± 0.45
DST + NAF 51.08 ± 0.77 52.00 ± 0.92 52.54 ± 0.64 52.55 ± 0.84 52.04 ± 0.79 81.70 ± 0.56 82.72 ± 0.49 82.85 ± 0.39 82.87 ± 0.33 82.53 ± 0.43

∆ +1.24 +0.32 +0.27 +0.62 +0.61 +0.95 +0.87 +0.66 +0.71 +0.80
LERM [52] 47.20 ± 0.52 47.50 ± 0.34 48.03 ± 0.28 48.42 ± 0.65 47.79 ± 0.41 82.36 ± 0.28 83.06 ± 0.18 82.98 ± 0.13 83.13 ± 0.13 82.88 ± 0.17

LERM + NAF 48.85 ± 1.06 48.83 ± 0.81 48.87 ± 0.94 48.92 ± 1.04 48.87 ± 0.96 83.14 ± 0.48 83.59 ± 0.63 83.23 ± 0.39 83.06 ± 0.31 83.26 ± 0.45
∆ +1.65 +1.33 +0.83 +0.50 +1.08 +0.78 +0.53 +0.26 -0.07 +0.38
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NeurIPS Paper Checklist481

1. Claims482

Question: Do the main claims made in the abstract and introduction accurately reflect the483

paper’s contributions and scope?484

Answer: [Yes]485

Justification: We summarize our main contributions in Section 1.486

Guidelines:487

• The answer NA means that the abstract and introduction do not include the claims488

made in the paper.489

• The abstract and/or introduction should clearly state the claims made, including the490

contributions made in the paper and important assumptions and limitations. A No or491

NA answer to this question will not be perceived well by the reviewers.492

• The claims made should match theoretical and experimental results, and reflect how493

much the results can be expected to generalize to other settings.494

• It is fine to include aspirational goals as motivation as long as it is clear that these goals495

are not attained by the paper.496

2. Limitations497

Question: Does the paper discuss the limitations of the work performed by the authors?498

Answer: [Yes]499

Justification: We discuss the limitations of this work in Appendix A.500

Guidelines:501

• The answer NA means that the paper has no limitation while the answer No means that502

the paper has limitations, but those are not discussed in the paper.503

• The authors are encouraged to create a separate "Limitations" section in their paper.504

• The paper should point out any strong assumptions and how robust the results are to505

violations of these assumptions (e.g., independence assumptions, noiseless settings,506

model well-specification, asymptotic approximations only holding locally). The authors507

should reflect on how these assumptions might be violated in practice and what the508

implications would be.509

• The authors should reflect on the scope of the claims made, e.g., if the approach was510

only tested on a few datasets or with a few runs. In general, empirical results often511

depend on implicit assumptions, which should be articulated.512

• The authors should reflect on the factors that influence the performance of the approach.513

For example, a facial recognition algorithm may perform poorly when image resolution514

is low or images are taken in low lighting. Or a speech-to-text system might not be515

used reliably to provide closed captions for online lectures because it fails to handle516

technical jargon.517

• The authors should discuss the computational efficiency of the proposed algorithms518

and how they scale with dataset size.519

• If applicable, the authors should discuss possible limitations of their approach to520

address problems of privacy and fairness.521

• While the authors might fear that complete honesty about limitations might be used by522

reviewers as grounds for rejection, a worse outcome might be that reviewers discover523

limitations that aren’t acknowledged in the paper. The authors should use their best524

judgment and recognize that individual actions in favor of transparency play an impor-525

tant role in developing norms that preserve the integrity of the community. Reviewers526

will be specifically instructed to not penalize honesty concerning limitations.527

3. Theory assumptions and proofs528

Question: For each theoretical result, does the paper provide the full set of assumptions and529

a complete (and correct) proof?530

Answer: [Yes]531
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Justification: We analyze the generalization bound of the target domain in Section 4, along532

with the corresponding proof.533

Guidelines:534

• The answer NA means that the paper does not include theoretical results.535

• All the theorems, formulas, and proofs in the paper should be numbered and cross-536

referenced.537

• All assumptions should be clearly stated or referenced in the statement of any theorems.538

• The proofs can either appear in the main paper or the supplemental material, but if539

they appear in the supplemental material, the authors are encouraged to provide a short540

proof sketch to provide intuition.541

• Inversely, any informal proof provided in the core of the paper should be complemented542

by formal proofs provided in appendix or supplemental material.543

• Theorems and Lemmas that the proof relies upon should be properly referenced.544

4. Experimental result reproducibility545

Question: Does the paper fully disclose all the information needed to reproduce the main ex-546

perimental results of the paper to the extent that it affects the main claims and/or conclusions547

of the paper (regardless of whether the code and data are provided or not)?548

Answer: [Yes]549

Justification: We present the experimental setup in Section 5.1, with additional details550

available in Appendix B.551

Guidelines:552

• The answer NA means that the paper does not include experiments.553

• If the paper includes experiments, a No answer to this question will not be perceived554

well by the reviewers: Making the paper reproducible is important, regardless of555

whether the code and data are provided or not.556

• If the contribution is a dataset and/or model, the authors should describe the steps taken557

to make their results reproducible or verifiable.558

• Depending on the contribution, reproducibility can be accomplished in various ways.559

For example, if the contribution is a novel architecture, describing the architecture fully560

might suffice, or if the contribution is a specific model and empirical evaluation, it may561

be necessary to either make it possible for others to replicate the model with the same562

dataset, or provide access to the model. In general. releasing code and data is often563

one good way to accomplish this, but reproducibility can also be provided via detailed564

instructions for how to replicate the results, access to a hosted model (e.g., in the case565

of a large language model), releasing of a model checkpoint, or other means that are566

appropriate to the research performed.567

• While NeurIPS does not require releasing code, the conference does require all submis-568

sions to provide some reasonable avenue for reproducibility, which may depend on the569

nature of the contribution. For example570

(a) If the contribution is primarily a new algorithm, the paper should make it clear how571

to reproduce that algorithm.572

(b) If the contribution is primarily a new model architecture, the paper should describe573

the architecture clearly and fully.574

(c) If the contribution is a new model (e.g., a large language model), then there should575

either be a way to access this model for reproducing the results or a way to reproduce576

the model (e.g., with an open-source dataset or instructions for how to construct577

the dataset).578

(d) We recognize that reproducibility may be tricky in some cases, in which case579

authors are welcome to describe the particular way they provide for reproducibility.580

In the case of closed-source models, it may be that access to the model is limited in581

some way (e.g., to registered users), but it should be possible for other researchers582

to have some path to reproducing or verifying the results.583

5. Open access to data and code584
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Question: Does the paper provide open access to the data and code, with sufficient instruc-585

tions to faithfully reproduce the main experimental results, as described in supplemental586

material?587

Answer: [Yes]588

Justification: We conduct experiments on five publicly available benchmark datasets: CIFAR-589

10 [25], CIFAR-100 [25], DTD [8], Caltech-101 [14], and ImageNet [12]. The codes are590

available at https://anonymous.4open.science/R/SSNA.591

Guidelines:592

• The answer NA means that paper does not include experiments requiring code.593

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/594

public/guides/CodeSubmissionPolicy) for more details.595

• While we encourage the release of code and data, we understand that this might not be596

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not597

including code, unless this is central to the contribution (e.g., for a new open-source598

benchmark).599

• The instructions should contain the exact command and environment needed to run to600

reproduce the results. See the NeurIPS code and data submission guidelines (https:601

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.602

• The authors should provide instructions on data access and preparation, including how603

to access the raw data, preprocessed data, intermediate data, and generated data, etc.604

• The authors should provide scripts to reproduce all experimental results for the new605

proposed method and baselines. If only a subset of experiments are reproducible, they606

should state which ones are omitted from the script and why.607

• At submission time, to preserve anonymity, the authors should release anonymized608

versions (if applicable).609

• Providing as much information as possible in supplemental material (appended to the610

paper) is recommended, but including URLs to data and code is permitted.611

6. Experimental setting/details612

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-613

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the614

results?615

Answer: [Yes]616

Justification: We present the experimental setup in Section 5.1, with additional details617

available in Appendix B.618

Guidelines:619

• The answer NA means that the paper does not include experiments.620

• The experimental setting should be presented in the core of the paper to a level of detail621

that is necessary to appreciate the results and make sense of them.622

• The full details can be provided either with the code, in appendix, or as supplemental623

material.624

7. Experiment statistical significance625

Question: Does the paper report error bars suitably and correctly defined or other appropriate626

information about the statistical significance of the experiments?627

Answer: [Yes]628

Justification: The results in Table 1, Table 2, and Table 7 (see Appendix C) are reported as629

the mean and standard error over three random trials.630

Guidelines:631

• The answer NA means that the paper does not include experiments.632

• The authors should answer "Yes" if the results are accompanied by error bars, confi-633

dence intervals, or statistical significance tests, at least for the experiments that support634

the main claims of the paper.635
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• The factors of variability that the error bars are capturing should be clearly stated (for636

example, train/test split, initialization, random drawing of some parameter, or overall637

run with given experimental conditions).638

• The method for calculating the error bars should be explained (closed form formula,639

call to a library function, bootstrap, etc.)640

• The assumptions made should be given (e.g., Normally distributed errors).641

• It should be clear whether the error bar is the standard deviation or the standard error642

of the mean.643

• It is OK to report 1-sigma error bars, but one should state it. The authors should644

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis645

of Normality of errors is not verified.646

• For asymmetric distributions, the authors should be careful not to show in tables or647

figures symmetric error bars that would yield results that are out of range (e.g. negative648

error rates).649

• If error bars are reported in tables or plots, The authors should explain in the text how650

they were calculated and reference the corresponding figures or tables in the text.651

8. Experiments compute resources652

Question: For each experiment, does the paper provide sufficient information on the com-653

puter resources (type of compute workers, memory, time of execution) needed to reproduce654

the experiments?655

Answer: [Yes]656

Justification: All experiments are conducted on NVIDIA V100 series GPUs, and the657

computational resources utilized in this work are described in Section 5.1.658

Guidelines:659

• The answer NA means that the paper does not include experiments.660

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,661

or cloud provider, including relevant memory and storage.662

• The paper should provide the amount of compute required for each of the individual663

experimental runs as well as estimate the total compute.664

• The paper should disclose whether the full research project required more compute665

than the experiments reported in the paper (e.g., preliminary or failed experiments that666

didn’t make it into the paper).667

9. Code of ethics668

Question: Does the research conducted in the paper conform, in every respect, with the669

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?670

Answer: [Yes]671

Justification: This work adheres to the NeurIPS Code of Ethics.672

Guidelines:673

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.674

• If the authors answer No, they should explain the special circumstances that require a675

deviation from the Code of Ethics.676

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-677

eration due to laws or regulations in their jurisdiction).678

10. Broader impacts679

Question: Does the paper discuss both potential positive societal impacts and negative680

societal impacts of the work performed?681

Answer: [Yes]682

Justification: We discuss the broader impacts of this work in Appendix A.683

Guidelines:684

• The answer NA means that there is no societal impact of the work performed.685
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• If the authors answer NA or No, they should explain why their work has no societal686

impact or why the paper does not address societal impact.687

• Examples of negative societal impacts include potential malicious or unintended uses688

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations689

(e.g., deployment of technologies that could make decisions that unfairly impact specific690

groups), privacy considerations, and security considerations.691

• The conference expects that many papers will be foundational research and not tied692

to particular applications, let alone deployments. However, if there is a direct path to693

any negative applications, the authors should point it out. For example, it is legitimate694

to point out that an improvement in the quality of generative models could be used to695

generate deepfakes for disinformation. On the other hand, it is not needed to point out696

that a generic algorithm for optimizing neural networks could enable people to train697

models that generate Deepfakes faster.698

• The authors should consider possible harms that could arise when the technology is699

being used as intended and functioning correctly, harms that could arise when the700

technology is being used as intended but gives incorrect results, and harms following701

from (intentional or unintentional) misuse of the technology.702

• If there are negative societal impacts, the authors could also discuss possible mitigation703

strategies (e.g., gated release of models, providing defenses in addition to attacks,704

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from705

feedback over time, improving the efficiency and accessibility of ML).706

11. Safeguards707

Question: Does the paper describe safeguards that have been put in place for responsible708

release of data or models that have a high risk for misuse (e.g., pretrained language models,709

image generators, or scraped datasets)?710

Answer: [NA]711

Justification: No such risks arise from this work.712

Guidelines:713

• The answer NA means that the paper poses no such risks.714

• Released models that have a high risk for misuse or dual-use should be released with715

necessary safeguards to allow for controlled use of the model, for example by requiring716

that users adhere to usage guidelines or restrictions to access the model or implementing717

safety filters.718

• Datasets that have been scraped from the Internet could pose safety risks. The authors719

should describe how they avoided releasing unsafe images.720

• We recognize that providing effective safeguards is challenging, and many papers do721

not require this, but we encourage authors to take this into account and make a best722

faith effort.723

12. Licenses for existing assets724

Question: Are the creators or original owners of assets (e.g., code, data, models), used in725

the paper, properly credited and are the license and terms of use explicitly mentioned and726

properly respected?727

Answer: [Yes]728

Justification: All open-source resources used in this work are properly cited in Section 5.1.729

Guidelines:730

• The answer NA means that the paper does not use existing assets.731

• The authors should cite the original paper that produced the code package or dataset.732

• The authors should state which version of the asset is used and, if possible, include a733

URL.734

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.735

• For scraped data from a particular source (e.g., website), the copyright and terms of736

service of that source should be provided.737
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• If assets are released, the license, copyright information, and terms of use in the738

package should be provided. For popular datasets, paperswithcode.com/datasets739

has curated licenses for some datasets. Their licensing guide can help determine the740

license of a dataset.741

• For existing datasets that are re-packaged, both the original license and the license of742

the derived asset (if it has changed) should be provided.743

• If this information is not available online, the authors are encouraged to reach out to744

the asset’s creators.745

13. New assets746

Question: Are new assets introduced in the paper well documented and is the documentation747

provided alongside the assets?748

Answer: [Yes]749

Justification: Our codes and a detailed README file have been released at https://750

anonymous.4open.science/R/SSNA.751

Guidelines:752

• The answer NA means that the paper does not release new assets.753

• Researchers should communicate the details of the dataset/code/model as part of their754

submissions via structured templates. This includes details about training, license,755

limitations, etc.756

• The paper should discuss whether and how consent was obtained from people whose757

asset is used.758

• At submission time, remember to anonymize your assets (if applicable). You can either759

create an anonymized URL or include an anonymized zip file.760

14. Crowdsourcing and research with human subjects761

Question: For crowdsourcing experiments and research with human subjects, does the paper762

include the full text of instructions given to participants and screenshots, if applicable, as763

well as details about compensation (if any)?764

Answer: [NA]765

Justification: No crowdsourcing or human subject research is involved in this work.766

Guidelines:767

• The answer NA means that the paper does not involve crowdsourcing nor research with768

human subjects.769

• Including this information in the supplemental material is fine, but if the main contribu-770

tion of the paper involves human subjects, then as much detail as possible should be771

included in the main paper.772

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,773

or other labor should be paid at least the minimum wage in the country of the data774

collector.775

15. Institutional review board (IRB) approvals or equivalent for research with human776

subjects777

Question: Does the paper describe potential risks incurred by study participants, whether778

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)779

approvals (or an equivalent approval/review based on the requirements of your country or780

institution) were obtained?781

Answer: [NA]782

Justification: No crowdsourcing or human subject research is involved in this work.783

Guidelines:784

• The answer NA means that the paper does not involve crowdsourcing nor research with785

human subjects.786

• Depending on the country in which research is conducted, IRB approval (or equivalent)787

may be required for any human subjects research. If you obtained IRB approval, you788

should clearly state this in the paper.789
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• We recognize that the procedures for this may vary significantly between institutions790

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the791

guidelines for their institution.792

• For initial submissions, do not include any information that would break anonymity (if793

applicable), such as the institution conducting the review.794

16. Declaration of LLM usage795

Question: Does the paper describe the usage of LLMs if it is an important, original, or796

non-standard component of the core methods in this research? Note that if the LLM is used797

only for writing, editing, or formatting purposes and does not impact the core methodology,798

scientific rigorousness, or originality of the research, declaration is not required.799

Answer: [NA]800

Justification: This work uses the LLM solely for language-related tasks such as writing,801

editing, and formatting.802

Guidelines:803

• The answer NA means that the core method development in this research does not804

involve LLMs as any important, original, or non-standard components.805

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)806

for what should or should not be described.807
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