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Hashed Watermark as a Filter: Boosting Robustness of
Weight-based Neural-Network Watermarking

Anonymous Author(s)

Abstract
As valuable digital assets, deep neural networks necessitate robust
ownership protection, positioning neural-network watermarking
(NNW) as a promising solution. Among various NNW approaches,
weight-based methods are favored for their simplicity and practi-
cality; however, they remain vulnerable to forging and overwriting
attacks. To address those challenges, we propose NeuralMark, a
robust approach built around a hashed watermark filter. Specifically,
we utilize a hash function to generate an irreversible binary wa-
termark from a secret key, which is then employed as a filter to
select the model parameters for embedding. This design cleverly
intertwines the embedding parameters with the hash function, pro-
viding robust defense against both forging and overwriting attacks.
An average pooling is also incorporated to resist fine-tuning and
pruning attacks. As a result, NeuralMark offers robust resilience
against a wide range of attacks without compromising model per-
formance. Also, it can be seamlessly integrated into various neural
network architectures, ensuring broad applicability. Theoretically,
we analyze its security boundary. Empirically, we verify its ef-
fectiveness and robustness across 13 distinct Convolutional and
Transformer architectures, covering five image classification tasks
and one text generation task. The source codes are available at
https://anonymous.4open.science/r/NeuralMark.
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1 Introduction
The advancements in artificial intelligence have led to the devel-
opment of numerous deep neural networks, particularly large lan-
guage models [1, 3, 7, 32, 36]. Training such models requires sub-
stantial investments in human resources, computational power,
and other resources, as exemplified by GPT-4, which costs around
$40 million to train [5]. Thus, they can be regarded as valuable
digital assets, necessitating urgent measures for ownership protec-
tion. To this end, neural-network watermarking (NNW) approaches
[35, 42, 46] have been proposed to protect model ownership by
embedding watermarks within the neural network. Methods that
require access to model weights for watermark embedding and
verification fall under white-box neural network watermarking
(NNW) [25, 30, 31, 44], whereas those that do not require access
to the model weights belong to black-box NNW [2, 15, 19, 23, 26].
Both approaches have demonstrated significant progress in safe-
guarding model ownership [42] and hold promise for integration in
practical applications [9, 10]. Given the distinct challenges inherent
in each approach, this paper concentrates on white-box NNW, with
black-box NNW reserved for future exploration.

Existing white-box NNW methods can be broadly categorized
into three sub-branches: (i) Weight-based methods [12, 25, 28, 30,
44] embedwatermarks intomodel weights; (ii) Passport-basedmeth-
ods [9, 10, 31, 49] introduce passport layers to replace normalization
layers for watermark embedding; and (iii) Activation-based meth-
ods [27, 29, 40] incorporate watermarks into the activation maps of
intermediate layers. Among these approaches, weight-based meth-
ods are particularly appealing due to their inherent simplicity and
practicality. By embedding watermarks directly into the model’s
weights, those methods offer a straightforward process that can be
seamlessly integrated into various network architectures without
altering the original structure. This feature renders them especially
valuable for various practical applications. Although several state-
of-the-art weight-based methods [12, 25, 28, 30] can effectively
resist fine-tuning and pruning attacks, they remain partially vulner-
able to forging, overwriting, or both types of attacks. On the one
hand, forging attacks attempt to fabricate counterfeit watermarks
and infer the corresponding secret key through reverse engineering,
by freezing the model parameters. In this scenario, the adversary
could claim the model’s ownership, resulting in ownership ambi-
guity. On the other hand, overwriting attacks aim to remove the
original watermark by embedding a counterfeit one. In particular,
adversaries can adaptively increase the embedding strength of their
watermarks without being required to match the original water-
mark’s embedding strength. In such cases, the original watermark
may be removed while the adversary’s watermark is embedded,
leading to the invalidation of the model’s ownership. This raises
a question: “How can we design a more robust and effective weight-
based NNW method that defends against all of the aforementioned
attacks?"
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To answer this question, we propose NeuralMark, a robust ap-
proach built around a hashed watermark filter. Specifically, we use a
hash function to generate an irreversible binary watermark from a
secret key, which is then employed as a filter to select the model pa-
rameters for embedding. The avalanche effect of hash function [45]
ensures that even slight changes in the input lead to significant, un-
predictable variations in the output, effectively impeding gradient
calculation and making reverse-engineering infeasible. Moreover,
because the hashed watermarks generated by the model owner and
the adversary are distinct, using them as private filters reduces the
overlap in selected parameters, especially when the filtering process
is performed repeatedly. This mechanism significantly increases the
difficulty for adversaries to identify and manipulate the filtered pa-
rameters, thereby protecting the original watermark. Therefore, the
hashed watermark filter cleverly intertwines the embedding param-
eters with the hash function, providing robust defense against both
forging and overwriting attacks. We also apply an average pooling
mechanism to the filtered parameters due to its resilience against
parameter perturbations. Upon obtaining the resulting parameters,
the hashed watermark is embedded into those parameters using
a lightweight watermarking embedding loss. When a potentially
unauthorized model is identified, the corresponding watermark can
be extracted from those parameters to verify ownership. As a result,
NeuralMark provides strong resilience against those attacks while
preserving model performance.

The main contributions of this paper are highlighted as follows.
• We propose a NeuralMark, which, to the best of our knowledge, is

the first method to utilize the hashedwatermark filter to boost the
robustness of weight-based NNW. Also, we provide a theoretical
analysis of its security boundary.

• In NeuralMark, an elegant hashed watermark filter is developed
to cleverly intertwine the embedding parameters with the hash
function, offering robust defense against both forging and over-
writing attacks.

• Extensive experimental results across 13 distinct Convolutional
and Transformer architectures, covering five image classification
tasks and one text generation task, verify the effectiveness and
robustness of NeuralMark.

2 Related Work
In this section, we reviewweight-based, passport-based, and activation-
based methods, respectively.

Weight-basedMethod. This kind of methods [12, 25, 28, 30, 44]
embeds watermarks into the model weights of neural networks.
For instance, [44] propose the first weight-based method, which
embeds the watermark into the model weights of an intermediate
layer in the neural network. Another example is that [28] propose
a method based on spread transform dither modulation that en-
hances the secrecy of the watermark. However, those two methods
cannot effectively resist forging and overwriting attacks. Moreover,
[12] utilize the secret keys to pseudo-randomly select weights for
watermark embedding and apply spread-spectrum modulation to
disperse the modulated watermark across different layers. This
method effectively defends overwriting attacks while neglecting
forging attacks. Additionally, [30] propose to greedily choose im-
portant model parameters for watermark embedding without an
additional secret key. Although this method is effective against

forging attacks, it fails to provide strong resistance to overwriting
attacks of varying strength levels. Recently, [25] introduce random
noises into the watermarked parameters and then employ a ma-
jority voting scheme to aggregate the verification results across
multiple rounds. While this method enhances the watermark’s ro-
bustness to some extent, it remains ineffective against forging and
overwriting attacks.

Passport-based Method. This group of methods [9, 10, 31, 49]
integrates the watermark into the normalization layers in neu-
ral networks. Specifically, [9, 10] propose the first passport-based
method, which utilizes additional passport samples (e.g., images) to
generate affine transformation parameters for the normalization lay-
ers, tightly binding them to the model performance. Subsequently,
[49] integrate a private passport-aware branch into the normaliza-
tion layers, which is trained jointly with the target model and is
used solely for watermark verification. Recently, [31] argue that
binding the model performance is insufficient to defend against
forging attacks, and thus propose establishing a hash mapping
between passport samples and watermarks.

Activation-based Method. This category of methods [27, 29,
40] incorporates watermarks into the activation maps of interme-
diate layers in neural networks. For instance, [40] incorporate the
watermark into the mean vector of activation maps generated by
predetermined trigger samples. Similarly, [27] directly integrate
the watermark into the activation maps associated with the trigger
samples. Additionally, [29] embed the watermark into the hidden
memory state of a recurrent neural network.

3 Preliminary
In this section, we elaborate on the principle and vulnerability of
the first weight-based method [44], which we refer to as Vanil-
laMark, serving as the foundation for subsequent weight-based
watermarking methods [12, 25, 28, 30]. Specifically, it begins by
selecting, averaging, and flattening a subset of model parameters
𝜃 into a parameter vector w̃ ∈ R𝑘 . A secret key matrix K ∈ R𝑘×𝑛

is then used to derive the extracted watermark via b̃ = 𝛿 (w̃K),
where 𝛿 (·) denotes the sigmoid function. To embed a target binary
watermark b into w̃, VanillaMark optimizes the following objective:

min
𝜃

L𝑚 + 𝜆L𝑒 (b̃, b), (1)

where L𝑚 denotes the main task loss (e.g., classification loss),
L𝑒 (·, ·) represents the binary cross-entropy loss, and 𝜆 is a pos-
itive trade-off hyper-parameter. Although VanillaMark is simple
and pioneering, and can resist fine-tuning and pruning attacks [44],
it remains vulnerable to the following two critical threats:
• Forging Attack: An adversary can learn the secret key for any

arbitrary watermark. Specifically, given a counterfeit watermark
b𝑎 , the attacker can learn a corresponding key K𝑎 by minimizing
L𝑒 (b𝑎, b̃𝑎), i.e., K𝑎 = argminK𝑎

L𝑒 (b𝑎, b̃𝑎).
• Overwriting Attack: VanillaMark neither protects the confiden-

tiality of watermarked parameters nor ensures non-overlapping
usage between the model owner’s and the adversary’s param-
eters. Once the watermarked parameters are identified, an ad-
versary can forge a counterfeit watermark tuple {K𝑎, b𝑎} and
embed b𝑎 into the model parameters by optimizing min𝜃 L𝑚 +
𝜆L𝑒 (b𝑎, b̃). Since different watermarks often induce conflicting

2
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(d) Pruning Attack

Figure 1: Illustrations of different types of attacks. (a) Forging attack: the adversary aims to generate a counterfeit secret
key–watermark pair without modifying the model parameters. (b) Overwriting attack: the adversary embeds a counterfeit
watermark to overwrite the original one. (c) Fine-tuning attack: the adversary fine-tunes the model in an attempt to remove
the original watermark. (d) Pruning attack: the adversary prunes the model parameters to remove the original watermark.

gradients on the same parameters, the newly embedded water-
mark can easily overwrite the original one.

4 Problem Formulations
In this section, we introduce several key formulations used through-
out this paper.

4.1 Weight-based NNW
In the weighted-based NNW problem, we are provided with a train-
ing dataset D and a watermark tuple W = {K, b}, where K is a
secret key and b is a binary watermark consisting of ones and zeros.
The goal is to train a watermarked model M(𝜃∗) using D such
that the model parameters 𝜃∗ effectively embed b while satisfying
the following criteria: (i) The watermark should minimally affect
the model performance and be difficult for adversaries to detect;
and (ii) The watermark must be resilient against a wide range of
adversarial attacks.

4.2 Threat Model
We assume that an adversary can illegally obtain a watermarked
model and identify the layers containing the watermark. Addi-
tionally, the adversary has access to the training datasets but is
constrained by limited computational resources. As discussed above,
this paper primarily focuses on forging and overwriting attacks,
while also considering fine-tuning and pruning attacks. Those at-
tack scenarios are described below.

• Forging Attack: As illustrated in Figure 1(a), in a forging attack,
the adversary aims to generate a counterfeit secret key–watermark
pair without modifying the model parameters. Specifically, the
adversary first randomly forges a counterfeit watermark and
then derives a corresponding secret key by optimizing it while
keeping the model parameters frozen [9, 10].

• Overwriting Attack: As presented in Figure 1(b), in an over-
writing attack, the adversary embeds a counterfeit watermark to
overwrite the original watermark [30].

• Fine-tuning Attack: As depicted in Figure 1(c), in a fine-tuning
attack, the adversary fine-tunes the model in an attempt to re-
move the original watermark.

• Pruning Attack: As shown in Figure 1(d), in a pruning attack,
the adversary attempts to remove the original watermark by
pruning the model parameters.

4.3 Success Criteria for Threat Model
Building on insights from [9, 10, 24, 50], a successful attack on a wa-
termarked model typically requires the adversary to either (i) forge
a counterfeit watermark without altering the model parameters,
or (ii) remove the original watermark through parameter modifica-
tions, all while preserving model performance. If the adversary only
embeds a counterfeit watermark without removing the original one,
the resulting model contains both. In this case, the model owner
can submit a version containing only the original watermark to an
authoritative third-party for verification. In contrast, the adversary

3
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Figure 2: Illustration of hashed watermark filter. Here, the model owner’s hashed watermark is [1, 0, 1, 0], while the adversary’s
is [0, 1, 1, 0]. Without filtering, all 16 parameters overlap. After one round of filtering, each retains eight parameters, with four
overlapping. A second round leaves four parameters each, with no overlap.

cannot provide a model with only the counterfeit watermark, as the
original watermark remains intact. As a result, the adversary can-
not convincingly claim ownership unless they train a new model
embedded solely with their own watermark. This not only makes
stealing the original model unnecessary but also incurs significant
training costs. Accordingly, we define the success criteria for each
type of attack as follows:

• Success Criteria for Forging Attack: Forge a counterfeit wa-
termark that passes verification without modifying the model
parameters.

• Success Criteria for Overwriting Attack: Remove the original
watermark and embed a counterfeit one by modifying the model
parameters, while maintaining model performance.

• Success Criteria for Fine-tuning Attack: Remove the origi-
nal watermark through fine-tuning, while maintaining model
performance.

• Success Criteria for Pruning Attack: Remove the original
watermark through parameter pruning, while maintainingmodel
performance.

5 Methodology
In this section, we present the proposed NeuralMark.

5.1 Motivation
As discussed in Section 3, most weight-based methods struggle to si-
multaneously defend against both forging and overwriting attacks.
On the one hand, forging attacks aim to generate a counterfeit
watermark and derive the corresponding secret key via gradient
backpropagation, while keeping the model parameters fixed. De-
fending against such attacks requires disrupting gradient computa-
tion to hinder reverse-engineering. On the other hand, overwriting
attacks attempt to remove the original watermark by embedding a
counterfeit one. Once watermarked parameters are identified, the
adversary can overwrite the original watermark. Since each water-
mark updates the model parameters in a distinct and often conflict-
ing direction, embedding a new watermark can easily disrupt the
original one. Therefore, to resist such attacks, it is essential to keep
the watermarked parameters confidential and ensure that those
used by the model owner and the adversary are non-overlapping.

To address both threats, we propose a hashed watermark filter
that leverages an irreversible binary watermark as a private fil-
ter to restrict embedding to a secret subset of model parameters.
Specifically, we utilize a hash function to generate an irreversible
binary watermark from a secret key, which is then applied as a filter
to select the model parameters for embedding. This design clev-
erly intertwines the embedding parameters with the hash function,
providing two key properties:

• Gradient Obfuscation: The avalanche effect of hash function
ensures that even minor changes in the input lead to large, un-
predictable changes in the output, effectively impeding gradient
computation and rendering reverse-engineering infeasible.

• Embedding Isolation: Since the hashed watermarks derived
by the model owner and the adversary are distinct, using them
as private filters can effectively reduce the overlap in selected
parameters, especially when the filtering process is performed
repeatedly. As exemplified in Figure 2, the model owner’s hashed
watermark is [1, 0, 1, 0], while the adversary’s is [0, 1, 1, 0]. With-
out filtering, all 16 model parameters are shared, yielding a 100%
overlap ratio. After the first round of filtering, each party retains
eight parameters, with four overlapping, reducing the overlap to
50%. A second filtering round results in four parameters per party,
with zero overlap, achieving a 0% overlap ratio. This progressive
isolation ensures that as filtering continues, the overlap between
the model owner’s and the adversary’s selected parameters is
significantly reduced. Consequently, it becomes increasingly dif-
ficult for the adversary to identify and manipulate the owner’s
watermarked parameters, even when increasing the embedding
strength of their watermarks, thereby preserving the integrity
of the original watermark against overwriting attacks.

In summary, those properties enable the hashed watermark filter
to offer strong resistance against both forging and overwriting
attacks, forming the core of NeuralMark. Next, we elaborate on the
NeuralMark.

5.2 NeuralMark
As depicted in Figure 3, NeuralMark consists of three primary
steps: (i) watermark generation; (ii) watermark embedding; and (iii)
watermark verification. Next, we detail how each step works.
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Figure 3: Illustrations of the processes for watermark generation (a), embedding (b), and verification (c).

5.2.1 Hashed Watermark Generation. As aforementioned, we con-
struct a hash-based mapping from a secret key to a binary water-
mark, as shown in Figure 3(a). Formally, the watermark b ∈ {0, 1}𝑛
is generated by b = H(K), where K ∈ R𝑘×𝑛 is a secret key matrix
with elements drawn from a random distribution (e.g., normalized
Gaussian distribution), H(·) denotes a hash function, and 𝑛 indi-
cates the length of the watermark. To accommodate various applica-
tion requirements, we adopt SHAKE-256 [8], an extendable-output
function from the SHA-3 family that allows dynamic adjustment
of output length. Furthermore, auxiliary content C (e.g., textual
descriptors or unique identifiers) can also be incorporated into
the hash function, yielding b = H(K| |C), where | | denotes the
concatenation operation. This mechanism enables context-aware
watermark generation without compromising the avalanche effect
of the hash function. For simplicity, we omit auxiliary content in
the subsequent experiments.

5.2.2 Watermark Embedding. As illustrated in Figure 3(b), to em-
bed the hashed watermark b into the modelM(𝜃 ), we first select
and flatten a subset of parameters (e.g., one-layer parameters) from
𝜃 into a parameter vector w ∈ R𝑚 . Then, we utilize the hashed
watermark filter to select the model parameters for embedding.
Specifically, let w(0) = w be the initial parameter vector. In the
𝑟 -th (𝑟 ∈ {1, · · · , 𝑅}) filtering round, the watermark b is repeated to
match the length of w(𝑟−1) , forming b(𝑟 ) , with any excess parame-
ters in w(𝑟−1) discarded. The parameter vector w(𝑟 ) is constructed
by selecting the elements from w(𝑟−1) at positions where b(𝑟 )

equals one, i.e., w(𝑟 ) =
[
𝑤

(𝑟−1)
𝑖

| 𝑖 ∈ { 𝑗 | 𝑏 (𝑟 )
𝑗

= 1}
]
, where

𝑤
(𝑟−1)
𝑖

is the 𝑖-th element ofw(𝑟−1) , and 𝑏 (𝑟 )
𝑗

is the 𝑗-th element of
b(𝑟 ) . After completing the whole watermark filtering process, the
filtered parameter vectorw(𝑅) is obtained. Next, we adopt the aver-
age pooling AVG(·) operation [13] to calculate the final parameters
as w̃ = AVG(w(𝑅) ) ∈ R𝑘 . This operation aggregates parameters
across broader regions, thereby enhancing robustness against pa-
rameter perturbations caused by fine-tuning and pruning attacks.
Finally, we formulate the overall optimal objective as

min
𝜃

L𝑚 + 𝜆L𝑒 (b̃, b), (2)

where L𝑚 denotes the main task loss (e.g., classification loss),
L𝑒 (·, ·) represents the binary cross-binary loss, b̃ = 𝛿 (w̃K) denotes
the extracted watermark, with 𝛿 (·) being the sigmoid function, and

𝜆 is a positive trade-off hyper-parameter. By minimizing Eq. (2),
the watermark can be embedded into model parameters during the
main task training. The watermark embedding process is summa-
rized in Algorithm 1.

Algorithm 1 Watermark Embedding in NeuralMark
Input: Training datasetD, secret key K, index of embedding layer

I, hyper-parameters 𝜆, 𝑇 , and filter rounds 𝑅.
Output: Watermarked modelM(𝜃∗).
1: Randomly initialize the model parameter 𝜃 .
2: Generate the watermark b = H(K).
3: for 𝑡 = 0 to 𝑇 − 1 do
4: Use I to select a subset from 𝜃 and flatten it to create w.
5: for 𝑟 = 1 to 𝑅 do
6: Perform watermark filtering on w to obtain w(𝑟 ) .
7: end for
8: Apply average pooling on w(𝑅) to yield w̃.
9: Execute sigmoid mapping on w̃K to produce b̃.
10: Update 𝜃 based on Eq. (2).
11: end for

5.2.3 Watermark Verification. The watermark verification process
is similar to the embedding process, as depicted in Figure 3(c).
Concretely, upon identifying a potentially unauthorized model, the
relevant subset of model parameters is extracted and subjected
to hashed watermark filtering and average pooling to derive an
extracted watermark b̃. This extracted watermark is then compared
to the model owner’s watermark b using the watermark detection
rate, which is defined by

𝜌 =
1
𝑛

𝑛∑︁
𝑖=1

1
[
𝑏𝑖 = T (𝑏𝑖 )

]
, (3)

where T (𝑥) is a threshold function that outputs 1 if 𝑥 > 0.5 and
0 otherwise, and 1(𝜓 ) is an indicator function that returns 1 if 𝜓
is true and 0 otherwise. The unauthorized model is confirmed to
belong to the model owner if both of the following conditions are
satisfied:
• The watermark detection rate 𝜌 exceeds a theoretical security

boundary 𝜌∗, which will be theoretically analyzed later.
• The watermark must correspond to the output of the hash func-

tion applied to the secret key, ensuring cryptographic consistency
with the predefined hash function.
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The watermark verification process is outlined in Algorithm 2.

Algorithm 2Watermark Verification in NeuralMark

Input: Watermarked model M(𝜃∗), secret key K, watermark b, in-
dex of embedding layer I, filter rounds 𝑅, and security boundary
𝜌∗.

Output: True (Verification Success) or False (Verification Failure).
1: Use I to select a subset from 𝜃∗ and flatten it to create w.
2: for 𝑟 = 1 to 𝑅 do
3: Perform watermark filtering on w to obtain w(𝑟 ) .
4: end for
5: Apply average pooling on w(𝑅) to yield w̃.
6: Execute sigmoid mapping on w̃K to produce b̃.
7: Calculate watermark detection rate 𝜌 based on Eq. (3).
8: if 𝜌 ≥ 𝜌∗ andH(K) = b then
9: return True
10: else
11: return False
12: end if

5.3 Theoretical Analysis
We present a theoretical analysis to determine the security bound-
ary of NeuralMark in Proposition 5.1.

Proposition 5.1. Under the assumption that the hash function pro-
duces uniformly distributed outputs [4], for a model watermarked by
NeuralMark with a watermark tuple {K, b}, where b = H(K), if an
adversary attempts to forge a counterfeit watermark tuple {K′, b′}
such that b′ = H(K′) and K′ ≠ K, then the probability of achieving
a watermark detection rate of at least 𝜌 (i.e., ≥ 𝜌) is upper-bounded
by 1

2𝑛
∑𝑛−⌈𝜌𝑛⌉
𝑖=0

(𝑛
𝑖

)
.

The proof of Proposition 5.1 is provided in Appendix A. Propo-
sition 5.1 provides a theoretical benchmark for establishing the
security boundary of the watermark detection rate. Specifically,
with 𝑛 = 256, if the watermark detection rate 𝜌 ≥ 88.28%, the
probability of this occurring by forgery is less than 1/2128. This
negligible probability allows us to confirm ownership with high
confidence. Thus, we set 𝑛 = 256 and use 88.28% as the security
bound for the watermark detection rate in the experiments.

6 Experiments
In this section, we evaluate NeuralMark across a variety of datasets,
architectures, and tasks.

6.1 Experimental Setup
Datasets and Architectures. We use five image classification
datasets: CIFAR-10, CIFAR-100 [20], Caltech-101 [11], Caltech-256
[14], and TinyImageNet [22], as well as one text generation dataset,
E2E [37]. Additionally, we utilize 11 image classification architec-
tures, including eight Convolutional architectures: AlexNet [21],
VGG-13, VGG-16 [41], GoogLeNet [43], ResNet-18, ResNet-34 [16],
WideResNet-50 [48], and MobileNet-V3-L [17], as well as three
Transformer architectures: ViT-B/16 [6], Swin-V2-B, and Swin-V2-
S [33]. Furthermore, we adopt two text generation architectures:
GPT-2-S and GPT-2-M [39].

Baselines and Metrics. We compare NeuralMark with Vanilla-
Mark [44], and two state-of-the-art weight-basedmethods proposed
in [30] and [25] (see Section 2 for details). For clarity, we refer to
those two methods as GreedyMark and VoteMark, respectively.
Additionally, we include a comparison with a method that does not
involve watermark embedding, referred to as Clean. For the image
classification task, we evaluate model performance using classifi-
cation accuracy, while the watermark embedding task is assessed
based on the watermark detection rate. As for the text generation
task, we follow [18] and evaluate model performance using BLEU,
NIST, MET, ROUGE-L, and CIDEr metrics, with the watermark
embedding task assessed based on the watermark detection rate.

Implementation Details. We implement NeuralMark using
the PyTorch framework [38] and conduct all experiments on three
NVIDIA V100 series GPUs. The specific hyper-parameters are sum-
marized below.

• For all the image classification architectures, we train for 200
epochs with a multi-step learning rate schedule from scratch,
with learning rates set to 0.01, 0.001, and 0.0001 for epochs 1 to
100, 101 to 150, and 151 to 200, respectively. We apply a weight
decay of 5×10−4 and set themomentum to 0.9. The batch sizes for
the training and test datasets are set to 64 and 128, respectively.
In addition, we set hyper-parameter 𝜆 to 1 and the number of
filter rounds 𝑅 to 4.

• For the GPT-2-S and GPT-2-M architectures, we utilize the Low-
Rank Adaptation (LoRA) technique [18]. Each architecture is
trained for 5 epochs with a linear learning rate scheduler, starting
at 2 × 10−4. We set the warm-up steps to 500, apply a weight
decay with a coefficient of 0.01, and enable bias correction in the
AdamW optimizer [34]. The dimension and the scaling factor for
LoRA are set to 4 and 32, respectively, with a dropout probability
of 0.1 for the LoRA layers. The batch sizes for the training and test
sets are 8 and 4, respectively. Moreover, we set hyper-parameter
𝜆 to 1 and the number of filter rounds 𝑅 to 10.

6.2 Fidelity Evaluation

Question 1. Is NeuralMark capable of reliably em-
bedding watermarks while preserving model perfor-
mance across a variety of datasets, architectures, and
tasks?

Diverse Datasets. First, we evaluate the influence of watermark
embedding on the model performance across diverse datasets. Ta-
ble 1 reports the results across five image datasets using AlexNet
and ResNet-18. We observe that all methods have minimal impact
on model performance while successfully embedding watermarks,
indicating that NeuralMark and other methods maintain model
performance across diverse datasets during watermark embedding.

Various Architectures. Next, we assess the impact of Neural-
Mark on model performance across various architectures. Table 2
lists the results of NeuralMark on the CIFAR-100 dataset using VGG-
13, VGG-16, GoogLeNet, ResNet-34, WideResNet-50, MobileNet-V3-
L, ViT-B/16, Swin-V2-B, and Swin-V2-S. We find that NeuralMark
maintains a 100% watermark detection rate across a wide range of
architectures while exerting minimal impact on model performance.
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Table 1: Comparison of classification accuracy (%) across distinct datasets using AlexNet and ResNet-18. Watermark detection
rates are omitted as they all reach 100%.

Dataset
Clean NeuralMark VanillaMark GreedyMark VoteMark

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-10 91.05 94.76 90.93 94.50 91.01 94.87 90.88 94.69 90.86 94.79
CIFAR-100 68.24 76.23 68.57 76.34 68.43 76.22 68.31 76.14 68.53 76.74
Caltech-101 68.07 68.83 68.38 68.47 68.54 68.99 68.59 69.08 68.88 67.91
Caltech-256 44.27 54.09 44.55 53.71 44.73 53.47 44.64 53.28 44.43 54.71

TinyImageNet 42.42 53.48 42.31 53.22 42.50 53.36 42.94 53.31 42.50 53.47

Table 2: Comparison of classification accuracy (%) on CIFAR-100 using various architectures. Watermark detection rates are
omitted as they all reach 100%.

Method ViT-B/16 Swin-V2-B Swin-V2-S VGG-16 VGG-13 ResNet-34 WideResNet-50 GoogLeNet MobileNet-V3-L

Clean 39.07 52.99 55.88 72.75 72.71 77.06 59.67 60.71 61.11
NeuralMark 39.22 53.57 55.87 72.61 71.49 77.03 58.41 60.02 61.8

Table 3: Comparison on E2E using GPT-2-S and GPT-2-M. Watermark detection rates are omitted as they all reach 100%.

GPT-2-S BLEU NIST MET ROUGE-L CIDEr GPT-2-M BLEU NIST MET ROUGE-L CIDEr

Clean 69.36 8.76 46.06 70.85 2.48 Clean 68.7 8.69 46.38 71.19 2.5
NeuralMark 69.59 8.79 46.01 70.85 2.48 NeuralMark 67.73 8.57 46.07 70.66 2.47

Those observations suggest that NeuralMark is highly generalizable
across various architectures.

Text Generation Tasks. Finally, we evaluate the effect of Neu-
ralMark on the text generation tasks. Table 3 presents the results of
NeuralMark applied to the GPT-2-S and GPT-2-M architectures on
the E2E dataset. We can observe that NeuralMark achieves a 100%
watermark detection rate while maintaining nearly lossless model
performance. Those results validate the potential of NeuralMark in
safeguarding the ownership of generative models.

Overall, NeuralMark demonstrates consistent fidelity across var-
ious datasets, architectures, and tasks.

6.3 Robustness Evaluation

Question 2. Is NeuralMark capable of withstanding
forging attacks?

We adopt the setting detailed in Section 4.2 to assess the ro-
bustness of NeuralMark against forging attacks. Concretely, for
VanillaMark and VoteMark, we first randomly generate a coun-
terfeit watermark and then learn the corresponding secret key by
freezing the model parameters. Since GreedyMark does not require
a secret key, we utilize 10 sets of randomly forged watermarks to
directly verify them using the watermarked model. For NeuralMark,
due to the avalanche effect of hash functions, a method similar to
GreedyMark is employed, where 10 sets of randomly forged water-
marks are directly verified using the watermarked model. Table 4
presents the watermark detection rates of forging attacks, and we
present the following significant observations. (1) For VanillaMark
and VoteMark, a pair of counterfeited secret key and watermark
can be successfully learned through reverse-engineering, indicating

Table 4: Comparison of watermark detection rate (%) against
forging attacks using ResNet-18.

Dataset NeuralMark VanillaMark GreedyMark VoteMark

CIFAR-10 48.56 100.00 50.70 100.00
CIFAR-100 49.41 100.00 52.85 100.00

their vulnerability to forging attacks. (2) NeuralMark and Greedy-
Mark demonstrate robust resistance against forging attacks, which
aligns with our expectations. In summary, those results suggest
that NeuralMark effectively withstands forging attacks.

Question 3. Is NeuralMark robust to overwriting at-
tacks, especially with varying attack strength levels?

We follow the setting outlined in Section 4.2 to assess the robust-
ness of NeuralMark against overwriting attacks. Specifically, we
analyze two key factors: the hyper-parameter 𝜆 in Eq. (2) and the
learning rate 𝜂. Here, 𝜆 controls the strength of the watermark em-
bedding, with larger values leading to stronger embedding, while 𝜂
primarily affects model performance.

Distinct Values of 𝜆. First, we investigate the influence of 𝜆
in overwriting attacks. Specifically, we set 𝜆 to 1, 10, 50, 100, and
1000, respectively. Table 5 presents the results on the CIFAR-100 to
CIFAR-10 and CIFAR-10 to CIFAR-100 tasks using ResNet-18. We
report only the original watermark detection rate, as the adversary’s
watermark detection rate reaches 100%. As defined in the success
criterion in Section 4.3, the original watermark must be effectively
removed for overwriting attacks to be deemed successful. Thus, the
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Table 5: Comparison of resistance to overwriting attacks at various trade-off hyper-parameters (𝜆) and learning rates (𝜂) using
ResNet-18. Values (%) inside and outside the bracket are watermark detection rate and classification accuracy, respectively.

Overwriting 𝜆 NeuralMark VanillaMark GreedyMark VoteMark 𝜂 NeuralMark VanillaMark GreedyMark VoteMark

CIFAR-100
to

CIFAR-10

1 93.65 (100) 93.30 (100) 93.45 (48.82) 93.63 (100) 0.001 93.65 (100) 93.30 (100) 93.45 (48.82) 93.63 (100)
10 93.44 (100) 93.58 (100) 93.29 (51.17) 93.13 (100) 0.005 91.76 (99.60) 92.17 (73.04) 92.13 (50.00) 92.45 (78.90)
50 93.46 (100) 93.50 (100) 93.07 (55.07) 93.39 (100) 0.01 91.58 (92.18) 91.79 (62.10) 91.53 (49.60) 91.76 (60.15)
100 93.53 (100) 92.95 (94.53) 93.18 (54.29) 93.53 (96.48) 0.1 75.2 (50.78) 79.68 (47.26) 72.42 (53.12) 70.92 (54.29)
1000 93.09 (100) 92.89 (53.90) 92.85 (49.60) 92.77 (59.37) 1 10.00 (44.53) 10.00 (53.51) 10.00 (48.04) 10.00 (53.51)

CIFAR-10
to

CIFAR-100

1 71.78 (100) 72.68 (98.82) 71.34 (55.07) 72.97 (98.43) 0.001 71.78 (100) 72.68 (98.82) 71.34 (55.07) 72.97 (98.43)
10 72.6 (100) 72.03 (98.04) 72.30 (49.21) 72.08 (98.04) 0.005 71.04 (99.60) 70.02 (69.53) 70.25 (48.04) 71.11 (71.09)
50 72.73 (100) 72.45 (95.70) 70.92 (46.87) 72.38 (97.26) 0.01 69.14 (96.48) 69.02 (59.76) 69.25 (46.09) 68.88 (62.11)
100 71.49 (100) 71.92 (92.18) 72.05 (48.04) 72.72 (93.75) 0.1 51.88 (60.54) 51.76 (53.90) 51.71 (51.56) 51.74 (56.25)
1000 71.81 (100) 71.35 (57.42) 71.74 (51.95) 70.73 (56.64) 1 1.00 (44.53) 1.00 (53.15) 1.00 (50.00) 1.00 (53.51)

overwriting attack experiments focus solely on whether the original
watermark can be successfully removed. We can summarize several
insightful observations.

• As 𝜆 increases, the original watermark detection rate of Neural-
Mark remains at 100%, while those of VanillaMark, GreedyMark,
and VoteMark significantly decline. In particular, when 𝜆 = 1000,
the embedding strength of the adversary’s watermark is 1000
times greater than that of the original watermark. At this point,
the original watermark detection rates for NeuralMark, Vanilla-
Mark, GreedyMark, and VoteMark on the CIFAR-100 to CIFAR-10
tasks are 100%, 53.90%, 49.60%, and 59.37%, respectively. Those re-
sults indicate that NeuralMark exhibits strong robustness against
overwriting attacks.

• As 𝜆 increases, model performance remains relatively stable.
This is because overwriting attacks jointly train both the main
task and the watermark embedding task, enabling the model
parameters to effectively adapt to both.

Distinct Values of 𝜂. Second, we examine the impact of 𝜂 in
overwriting attacks. Concretely, we set 𝜂 to 0.001, 0.005, 0.01, 0.1,
and 1, respectively. Table 5 lists the results on the CIFAR-100 to
CIFAR-10 and CIFAR-10 to CIFAR-100 tasks using ResNet-18. We
have the following important observations.

• As 𝜂 increases, model performance declines due to its substantial
impact on performance. Thus, the adversary cannot arbitrarily
increase 𝜂 to strengthen the attack.

• At 𝜂 = 0.005, the original watermark detection rates for Vanilla-
Mark, GreedyMark, and VoteMark drop dramatically, whereas
NeuralMark maintains a detection rate close to 100%. When
𝜂 = 0.01, the model performance of NeuralMark on the CIFAR-
100 to CIFAR-10 task decreases by 2.07%, but its original wa-
termark detection rate remains above the security boundary of
88.28% defined in Section 5.3, while those for the other methods
fall significantly. For 𝜂 >= 0.1, although the original watermark
detection rate of NeuralMark drops below the security boundary,
the model performance is completely compromised, indicating
that the attack is ineffective.

On thewhole, all results confirmNeuralMark’s robustness against
overwriting attacks.

Question 4. Is NeuralMark robust to fine-tuning at-
tacks?

We adhere to the setting stated in Section 4.2 to evaluate the
robustness of NeuralMark against fine-tuning attacks.

Fine-tuning All Model Parameters. Following [30], we adopt
the same hyper-parameters for fine-tuning attacks as during train-
ing, except for setting the learning rate to 0.001. Also, we replace
the task-specific classifier with randomly initialized parameters
and optimize all parameters by minimizing the main task loss L𝑚

for 100 epochs. Table 6 reports the results of fine-tuning attacks,
we find that watermarks embedded with NeuralMark maintain a
100% watermark detection rate across all fine-tuning tasks. In con-
trast, watermarks embedded with VanillaMark, GreedyMark, and
VoteMark experience a slight reduction in detection rates across
several tasks. Those results indicate that fine-tuning attacks cannot
effectively remove watermarks embedded with NeuralMark.

Fine-tuning Watermark-Specific Layer Parameters. Fur-
thermore, Table 7 reports the experimental results of fine-tuning
the watermark-specific layer and classifier. As can be seen, the
watermark detection rate remains at 100%, but the model perfor-
mance of all methods exhibits a substantial decline. Specifically,
for the CIFAR-10 to CIFAR-100 task using ResNet-18, the accuracy
achieved by NeuralMark through fine-tuning the watermark em-
bedding layer and classifier is 49.77%, which is markedly lower
than the 71.67% accuracy obtained when all parameters are fine-
tuned. Similar trends are observed across other methods. Those
results indicate that fine-tuning only the watermark embedding
layer and classifier makes it challenging to maintain effective model
performance, resulting in the failure of fine-tuning attacks.

Overall, NeuralMark can effectively defend against fine-tuning
attacks.

Question 5. Is NeuralMark robust to pruning attacks?

We now verify the robustness of NeuralMark in resisting prun-
ing attacks. Specifically, we randomly reset a specified proportion
of model parameters in the watermark embedding layer to zero. Fig-
ure 4 shows the results of pruning attacks on the CIFAR-10 dataset
using AlexNet and ResNet, respectively. As can be seen, as the
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Table 6: Comparison of resistance to fine-tuning attacks. Values (%) inside and outside the bracket are the watermark detection
rate and classification accuracy, respectively.

Fine-tuning
Clean NeuralMark VanillaMark GreedyMark VoteMark

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-100 to CIFAR-10 89.44 93.21 89.11(100) 93.74(100) 89.00(100) 93.29(100) 89.34(99.21) 93.21(100) 89.03(100) 93.59(100)
CIFAR-10 to CIFAR-100 65.46 72.17 64.60(100) 71.67(100) 65.03(92.18) 72.49(97.26) 64.57(98.82) 72.06(100) 64.83(96.09) 72.27(98.04)

Caltech-256 to Caltech-101 72.69 76.93 73.55(100) 76.60(100) 72.90(100) 78.48(100) 73.12(100) 77.19(100) 72.90(100) 77.41(100)
Caltech-101 to Caltech-256 43.39 46.48 43.15(100) 44.42(100) 43.21(98.43) 45.69(99.60) 43.47(99.60) 45.25(100) 43.78(98.43) 45.29(100)

Table 7: Comparison of resistance to fine-tuning attacks against watermark embedding layer using ResNet-18. Values (%) inside
and outside the bracket are the watermark detection rate and classification accuracy, respectively.

Fine-tuning
Clean NeuralMark VanillaMark GreedyMark VoteMark

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-100 to CIFAR-10 85.55 89.15 85.35(100) 88.83(100) 85.48(91.01) 89.35(85.93) 80.41(96.48) 76.15(94.14) 84.97(89.06) 89.66(85.54)
CIFAR-10 to CIFAR-100 58.96 49.74 58.50(100) 49.77(100) 58.75(74.21) 49.97(70.31) 51.75(97.65) 19.94(82.42) 58.81(80.07) 49.08(71.87)

Caltech-256 to Caltech-101 47.65 74.09 71.29(100) 73.12(100) 71.56(100) 74.03(100) 72.04(100) 68.45(100) 71.62(100) 72.47(99.60)
Caltech-101 to Caltech-256 40.61 40.00 40.34(100) 40.34(100) 40.71(96.09) 39.04(93.36) 40.68(100) 36.45(98.82) 39.52(95.31) 39.73(93.75)

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(a) NeuralMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(b) VanillaMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(c) GreedyMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(d) VoteMark

Figure 4: Comparison of resistance to pruning attacks at various pruning ratios on CIFAR-10 using AlexNet and ResNet-18.

pruning ratio increases, the performance of NeuralMark degrades
while the detection rate remains nearly 100%. This indicates Neural-
Mark’s robustness against pruning attacks. Moreover, we observe
that both VanillaMark and VoteMark exhibit strong resistance to
pruning attacks, while GreedyMark demonstrates relatively weak
resistance. One possible reason is that GreedyMark depends on
several important parameters, and their removal may affect its ro-
bustness. More results of pruning attacks across distinct datasets
are provided in Appendix B. All the results suggest that NeuralMark
effectively resists pruning attacks.

6.4 Hashed Watermark Filter Analysis

Question 6. How does the number of filtering rounds
impact the fidelity of NeuralMark?

To evaluate the impact of filtering rounds on NeuralMark’s fi-
delity, we conduct experiments with 6 and 8 filters, compared to
the default 4 filters. Table 8 presents the impact of watermark em-
bedding on the model performance across distinct filtering rounds.

The results demonstrate that NeuralMark, even with varying filter-
ing rounds, has a minimal effect on the model performance while
successfully embedding watermarks.

Table 8: Comparison of classification accuracy (%) with vari-
ous distinct filter rounds on CIFAR-10 and CIFAR-100 using
ResNet-18. Watermark detection rates are omitted as they
all reach 100%.

Dataset 4 Filters 6 Filters 8 Filters

CIFAR-10 94.79 94.74 94.88
CIFAR-100 76.74 75.59 76.16

Question 7. How does the number of filtering rounds
influence the robustness of NeuralMark?

To assess the influence of the number of filtering rounds on
NeuralMark’s robustness against attacks, we conduct experiments
with 6 and 8 filters, compared to the default 4 filters. We omit
forging attacks, as the hashed watermark filter is resilient to them.
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Table 9: Comparison of resistance to overwriting attacks at various trade-off hyper-parameters (𝜆) and learning rates (𝜂)
with distinct filtering rounds using ResNet-18. Values (%) inside and outside the bracket are watermark detection rate and
classification accuracy, respectively.

Overwriting 𝜆 4 Filters 6 Filters 8 Filters 𝜂 4 Filters 6 Filters 8 Filters

CIFAR-100
to

CIFAR-10

1 93.65 (100) 93.13(100) 93.40(100) 0.001 93.65 (100) 93.13(100) 93.40(100)
10 93.44 (100) 93.06(100) 93.41(100) 0.005 91.76 (99.60) 92.10(100) 91.62(100)
50 93.46 (100) 93.06(100) 93.54(100) 0.01 91.58 (92.18) 91.64(94.92) 90.48(89.84)
100 93.53 (100) 92.88(100) 92.99(100) 0.1 75.2 (50.78) 75.84(58.2) 74.54(51.56)
1000 93.09 (100) 93.03(100) 93.39(100) 1 10.00 (44.53) 10.00(47.26) 10.00(50.39)

CIFAR-10
to

CIFAR-100

1 71.78 (100) 71.69(100) 72.63(100) 0.001 71.78 (100) 71.69(100) 72.63(100)
10 72.6 (100) 72.06(100) 72.81(100) 0.005 71.04 (99.60) 70.65(100) 71.46(100)
50 72.73 (100) 71.85(100) 72.85(100) 0.01 69.14 (96.48) 69.47(97.26) 67.88(95.70)
100 71.49 (100) 71.88(100) 72.00(100) 0.1 51.88 (60.54) 55.18(62.10) 50.36(55.07)
1000 71.81 (100) 72.22(100) 72.39(100) 1 1.00 (44.53) 1.00(47.26) 1.00(50.39)

Overwriting Attacks. Table 9 lists the results of overwriting
attacks across distinct filtering rounds. From the results, we find
that when the number of filtering rounds is set to 6, NeuralMark
exhibits superior robustness compared to 4 and 8 filter rounds.
Specifically, at 𝜂 = 0.01, the original watermark detection rates
for 4, 6, and 8 filter rounds on the CIFAR-100 to CIFAR-10 task are
92.18%, 94.92%, and 89.84%, respectively. Those results indicate that
increasing the number of filtering rounds can enhance robustness
against overwriting attacks to a certain extent. However, when
the number of filtering rounds exceeds a certain threshold, the
robustness may be slightly compromised due to the reduction in
the number of parameters.

Fine-tuning Attacks. Table 10 reports the results of fine-tuning
attacks across distinct filtering rounds. We can observe that Neu-
ralMark maintains a watermark detection rate of 100% across all
filtering rounds, with negligible impact on the model performance.

Table 10: Comparison of resistance to fine-tuning attacks
with distinct filter rounds using ResNet-18. Watermark de-
tection rates are omitted as they all reach 100%.

Fine-tuning Clean 4 Filters 6 Filters 8 Filters

CIFAR-100 to CIFAR-10 93.21 93.74 93.01 93.55
CIFAR-10 to CIFAR-100 72.17 71.67 72.68 72.27

Pruning Attacks. Figure 5 shows the results of pruning attacks
on the CIFAR-10 and CIFAR-100 datasets using ResNet-18 across
different filtering rounds. As can be seen, as the number of filtering
rounds increases, the robustness of NeuralMark in resisting pruning
attacks exhibits a slight decline. One reason is that increasing the
number of filter rounds reduces the number of filtered parameters,
leading to a smaller average pooling window size, which affects the
robustness against pruning attacks.

Question 8. How does the hashed watermark filter
affect the overlap rate between the model owner and
the adversary?

To analyze the effect of the hashed watermark filter on the over-
lap rate between the model owner and the adversary, we generate
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Figure 5: Comparison of resistance to pruning attacks with
distinct filter rounds on CIFAR-10 and CIFAR-100 using
ResNet-18 at various pruning ratios.

five counterfeit watermarks and calculate the overlap ratio between
the parameters filtered by those and the original watermark. As
shown in Figure 6, the overlap rate decreases towards zero with
more filtering rounds, indicating that watermark filtering enhances
the confidentiality of the watermarked parameters.
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Figure 6: Comparison of parameter overlap ratio with differ-
ent filter rounds on CIFAR-100 using ResNet-18.

6.5 Additional Analysis

Question 9. How does NeuralMark affect the parame-
ter distribution?
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Figure 7: Comparison of parameter distributions on CIFAR-100 with distinct architectures.
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Figure 8: Comparison of model performance convergence across distinct architectures on CIFAR-100.

To assess the influence of NeuralMark on the parameter distribu-
tion, Figure 7 present the parameter distributions on the CIFAR-100
dataset with various architectures. As can be seen, the parameter
distributions of Clean and NeuralMark are nearly indistinguish-
able. Thus, it is challenging for adversaries to detect the embedded
watermarks within the model.

Question 10. How does NeuralMark influence the per-
formance convergence?

To examine the impact of NeuralMark on model performance
convergence, Figure 8 show the results on the CIFAR-100 dataset
with various architectures. We find that the performance curves of
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Table 11: Comparison of the effects of average pooling on resistance to fine-tuning and pruning attacks using ResNet-18. Values
(%) inside and outside the bracket are watermark detection rate and classification accuracy, respectively.

Method
CIFAR-100 to CIFAR-10 Fine-tuning (Learning Rate) CIFAR-100 Pruning (Pruning Ratio)

0.001 0.005 0.01 40% 60% 80%

NeuralMark (w/o AP) 93.26 (100) 92.20 (100) 90.68 (81.64) 71.82 (90.62) 57.50 (78.51) 16.14 (69.92)
NeuralMark 93.74 (100) 92.25 (100) 91.25 (96.87) 69.86 (100) 43.88 (99.21) 9.85 (99.21)

Table 12: Comparison of average time cost (in seconds) on CIFAR-100 using ResNet-18. Here, 𝑅 is the number of filtering rounds.

Method Clean NeuralMark
(𝑅 = 1)

NeuralMark
(𝑅 = 2)

NeuralMark
(𝑅 = 3)

NeuralMark
(𝑅 = 4) VanillaMark GreedyMark VoteMark

Time (s) 23.60 24.49 24.94 25.01 25.19 24.34 47.43 35.17

Clean and NeuralMark exhibit a similar trend of change and are
closely aligned, indicating that NeuralMark does not negatively
affect the convergence of model performance.

Question 11. How does average pooling impact Neu-
ralMark?

To verify the efficacy of average pooling, we compare Neural-
Mark with its variant without average pooling, i.e, NeuralMark w/o
AP. As shown in Table 11, both versions resist fine-tuning attacks
at lower learning rates. However, at a learning rate of 0.01, the
detection rate for NeuralMark (w/o AP) drops to 81.64%, below the
security boundary, while NeuralMark maintains at 96.87%. In addi-
tion, the detection rate of NeuralMark (w/o AP) rapidly declines
with increasing pruning rates, reaching 69.92% at an 80% prun-
ing rate, while NeuralMark achieves 99.21%. Those results confirm
that average pooling enhances resistance to both fine-tuning and
pruning attacks.

Question 12. Does NeuralMark impose a significant
additional computational burden during training?

Table 12 list the average time cost (in seconds) per training epoch
over five epochs on the CIFAR-100 dataset using ResNet-18. Neu-
ralMark’s running time is comparable to that of Clean and Vanilla-
Mark, highlighting the efficiency of NeuralMark. Also, NeuralMark
outperforms GreedyMark in terms of speed due to GreedyMark’s
reliance on costly sorting operations for parameter selection. More-
over, NeuralMark demonstrates significantly faster running times
compared to VoteMark, as it avoids the multiple rounds of water-
mark embedding loss calculations required by VoteMark. Those
results highlight the superior efficiency of NeuralMark.

Question 13. How do the watermark embedding lay-
ers impact the model’s performance?

To investigate the impact of watermark embedding layers on
the model performance, we randomly choose four individual layers
and all layers from ResNet-18 for watermark embedding. Table 13
presents the results on the CIFAR-100 dataset, showing that embed-
ding different layers or all layers does not significantly affect the
model performance.

Table 13: Comparison of classification accuracy (%) on dif-
ferent watermarking layers on CIFAR-100 using ResNet-18.
Here, Layers 1-4 denote randomly chosen layers, while All
Layer refers to all layers.Watermark detection rates are omit-
ted as they all reach 100%.

Watermarking Layer Layer 1 Layer 2 Layer 3 Layer 4 All Layer

Accuracy 76.51 76.68 76.30 76.73 75.86

Question 14. What is the effect of varying the water-
mark length on model performance?

To evaluate the influence of watermark length on the model per-
formance, we set watermark lengths to 64, 128, 256, 512, 1024, and
2048, respectively. Table 14 lists the results on the CIFAR-100 dataset
using ResNet-18, indicating that NeuralMark can achieve a 100%
detection rate with various watermark lengths while preserving
nearly lossless model performance.

Table 14: Comparison of classification accuracy (%) for dis-
tinct watermark lengths on CIFAR-100 using ResNet-18. Wa-
termark detection rates are omitted as they all reach 100%.

Watermark Length 64 128 256 512 1024 2048

Accuracy 75.84 75.90 76.46 76.18 76.51 76.27

7 Conclusion
In this paper, we present NeuralMark, amethod designed to enhance
the robustness of weight-based NNW. At the core of NeuralMark is
a hashedwatermark filter, which utilizes a hash function to generate
an irreversible binary watermark from a secret key, subsequently
employing this watermark as a filter to select model parameters
for embedding. This design cleverly intertwines the embedding
parameters with the hash function, providing robust protection
against both forging and overwriting attacks. Moreover, the incor-
poration of average pooling provides resilience against fine-tuning
and pruning attacks, ensuring comprehensive defense without com-
promising model performance. We provide a theoretical analysis of
NeuralMark’s security boundary. Extensive experiments on various
datasets, architectures, and tasks confirm NeuralMark’s effective-
ness and robustness. In the future, we plan to extend NeuralMark
to more complex scenarios, for instance, federated learning [47].
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A Proof for Proposition 5.1
Proposition 5.1. Under the assumption that the hash function pro-
duces uniformly distributed outputs [4], for a model watermarked by
NeuralMark with a watermark tuple {K, b}, where b = H(K), if an
adversary attempts to forge a counterfeit watermark tuple {K′, b′}
such that b′ = H(K′) and K′ ≠ K, then the probability of achieving
a watermark detection rate of at least 𝜌 (i.e., ≥ 𝜌) is upper-bounded
by 1

2𝑛
∑𝑛−⌈𝜌𝑛⌉
𝑖=0

(𝑛
𝑖

)
.

Proof. Since the hash function produces uniformly distributed
outputs, each bit of the counterfeit watermark matches the corre-
sponding bit of the extracted watermark from model parameters
with a probability of 1

2 . The number of matching bits follows a
binomial distribution with parameters 𝑛 and 𝑝 = 1

2 . To achieve a
detection rate of at least 𝜌 , the adversary needs at least ⌈𝜌𝑛⌉ bits
to match out of 𝑛 bits. Thus, the probability of having at least ⌈𝜌𝑛⌉
matching bits is given by

Pr
[
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(4)

Accordingly, the probability of an adversary forging a counterfeit
watermark that achieves a watermark detection rate of at least 𝜌
(i.e., ≥ 𝜌) is upper-bounded by 1

2𝑛
∑𝑛−⌈𝜌𝑛⌉
𝑖=0

(𝑛
𝑖

)
.
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Figure 9: Comparison of resistance to pruning attacks at var-
ious pruning ratios on CIFAR-100 using AlexNet and ResNet-
18.

B Additional Results of Pruning Attacks
Figure 9-11 provide the results from pruning attacks conducted on
the CIFAR-100, Caltech-101, and Caltech-256 datasets, respectively.
As can be seen, as the pruning ratio increases, the performance of

NeuralMark degrades while the detection rate remains nearly 100%.
This indicates NeuralMark’s robustness against pruning attacks.
Those results collectively suggest NeuralMark exhibits superior
robustness in resisting pruning attacks compared to other methods.
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Figure 10: Comparison of resistance to pruning attacks at
various pruning ratios on Caltech-101 using AlexNet and
ResNet-18.

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(a) NeuralMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(b) VanillaMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(c) GreedyMark
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Figure 11: Comparison of resistance to pruning attacks at
various pruning ratios on Caltech-256 using AlexNet and
ResNet-18.
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