
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Hashed Watermark as a Filter: Boosting Robustness of
Weight-based Neural-Network Watermarking

Anonymous Author(s)

Abstract
As valuable digital assets, deep neural networks necessitate robust
ownership protection, positioning neural-network watermarking
(NNW) as a promising solution. Among various NNW approaches,
weight-based methods are favored for their simplicity and practi-
cality; however, they remain vulnerable to forging and overwriting
attacks. To address those challenges, we propose NeuralMark, a
robust approach built around a hashed watermark filter. Specifically,
we utilize a hash function to generate an irreversible binary wa-
termark from a secret key, which is then employed as a filter to
select the model parameters for embedding. This design cleverly
intertwines the embedding parameters with the hash function, pro-
viding robust defense against both forging and overwriting attacks.
An average pooling is also incorporated to resist fine-tuning and
pruning attacks. As a result, NeuralMark offers robust resilience
against a wide range of attacks without compromising model per-
formance. Also, it can be seamlessly integrated into various neural
network architectures, ensuring broad applicability. Theoretically,
we analyze its security boundary. Empirically, we verify its ef-
fectiveness and robustness across 13 distinct Convolutional and
Transformer architectures, covering five image classification tasks
and one text generation task. The source codes are available at
https://anonymous.4open.science/r/NeuralMark.

CCS Concepts
• Security and privacy→ Digital rights management; Domain-
specific security and privacy architectures.

Keywords
Neural-network Watermarking, Weight-based Approach, Hashed
Watermark Filter

ACM Reference Format:
Anonymous Author(s). 2025. Hashed Watermark as a Filter: Boosting Ro-
bustness of Weight-based Neural-Network Watermarking. In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion email (CCS ’25). ACM, New York, NY, USA, 14 pages. https://doi.org/
XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2025/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The advancements in artificial intelligence have led to the devel-
opment of numerous deep neural networks, particularly large lan-
guage models [1, 3, 7, 32, 36]. Training such models requires sub-
stantial investments in human resources, computational power,
and other resources, as exemplified by GPT-4, which costs around
$40 million to train [5]. Thus, they can be regarded as valuable
digital assets, necessitating urgent measures for ownership protec-
tion. To this end, neural-network watermarking (NNW) approaches
[35, 42, 46] have been proposed to protect model ownership by
embedding watermarks within the neural network. Methods that
require access to model weights for watermark embedding and
verification fall under white-box neural network watermarking
(NNW) [25, 30, 31, 44], whereas those that do not require access
to the model weights belong to black-box NNW [2, 15, 19, 23, 26].
Both approaches have demonstrated significant progress in safe-
guarding model ownership [42] and hold promise for integration in
practical applications [9, 10]. Given the distinct challenges inherent
in each approach, this paper concentrates on white-box NNW, with
black-box NNW reserved for future exploration.

Existing white-box NNW methods can be broadly categorized
into three sub-branches: (i) Weight-based methods [12, 25, 28, 30,
44] embedwatermarks intomodel weights; (ii) Passport-basedmeth-
ods [9, 10, 31, 49] introduce passport layers to replace normalization
layers for watermark embedding; and (iii) Activation-based meth-
ods [27, 29, 40] incorporate watermarks into the activation maps of
intermediate layers. Among these approaches, weight-based meth-
ods are particularly appealing due to their inherent simplicity and
practicality. By embedding watermarks directly into the model’s
weights, those methods offer a straightforward process that can be
seamlessly integrated into various network architectures without
altering the original structure. This feature renders them especially
valuable for various practical applications. Although several state-
of-the-art weight-based methods [12, 25, 28, 30] can effectively
resist fine-tuning and pruning attacks, they remain partially vulner-
able to forging, overwriting, or both types of attacks. On the one
hand, forging attacks attempt to fabricate counterfeit watermarks
and infer the corresponding secret key through reverse engineering,
by freezing the model parameters. In this scenario, the adversary
could claim the model’s ownership, resulting in ownership ambi-
guity. On the other hand, overwriting attacks aim to remove the
original watermark by embedding a counterfeit one. In particular,
adversaries can adaptively increase the embedding strength of their
watermarks without being required to match the original water-
mark’s embedding strength. In such cases, the original watermark
may be removed while the adversary’s watermark is embedded,
leading to the invalidation of the model’s ownership. This raises
a question: “How can we design a more robust and effective weight-
based NNW method that defends against all of the aforementioned
attacks?"

1

https://anonymous.4open.science/r/NeuralMark
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CCS ’25, October 13-17, 2025, Taipei, Taiwan Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

To answer this question, we propose NeuralMark, a robust ap-
proach built around a hashed watermark filter. Specifically, we use a
hash function to generate an irreversible binary watermark from a
secret key, which is then employed as a filter to select the model pa-
rameters for embedding. The avalanche effect of hash function [45]
ensures that even slight changes in the input lead to significant, un-
predictable variations in the output, effectively impeding gradient
calculation and making reverse-engineering infeasible. Moreover,
because the hashed watermarks generated by the model owner and
the adversary are distinct, using them as private filters reduces the
overlap in selected parameters, especially when the filtering process
is performed repeatedly. This mechanism significantly increases the
difficulty for adversaries to identify and manipulate the filtered pa-
rameters, thereby protecting the original watermark. Therefore, the
hashed watermark filter cleverly intertwines the embedding param-
eters with the hash function, providing robust defense against both
forging and overwriting attacks. We also apply an average pooling
mechanism to the filtered parameters due to its resilience against
parameter perturbations. Upon obtaining the resulting parameters,
the hashed watermark is embedded into those parameters using
a lightweight watermarking embedding loss. When a potentially
unauthorized model is identified, the corresponding watermark can
be extracted from those parameters to verify ownership. As a result,
NeuralMark provides strong resilience against those attacks while
preserving model performance.

The main contributions of this paper are highlighted as follows.
• We propose a NeuralMark, which, to the best of our knowledge, is

the first method to utilize the hashedwatermark filter to boost the
robustness of weight-based NNW. Also, we provide a theoretical
analysis of its security boundary.

• In NeuralMark, an elegant hashed watermark filter is developed
to cleverly intertwine the embedding parameters with the hash
function, offering robust defense against both forging and over-
writing attacks.

• Extensive experimental results across 13 distinct Convolutional
and Transformer architectures, covering five image classification
tasks and one text generation task, verify the effectiveness and
robustness of NeuralMark.

2 Related Work
In this section, we reviewweight-based, passport-based, and activation-
based methods, respectively.

Weight-basedMethod. This kind of methods [12, 25, 28, 30, 44]
embeds watermarks into the model weights of neural networks.
For instance, [44] propose the first weight-based method, which
embeds the watermark into the model weights of an intermediate
layer in the neural network. Another example is that [28] propose
a method based on spread transform dither modulation that en-
hances the secrecy of the watermark. However, those two methods
cannot effectively resist forging and overwriting attacks. Moreover,
[12] utilize the secret keys to pseudo-randomly select weights for
watermark embedding and apply spread-spectrum modulation to
disperse the modulated watermark across different layers. This
method effectively defends overwriting attacks while neglecting
forging attacks. Additionally, [30] propose to greedily choose im-
portant model parameters for watermark embedding without an
additional secret key. Although this method is effective against

forging attacks, it fails to provide strong resistance to overwriting
attacks of varying strength levels. Recently, [25] introduce random
noises into the watermarked parameters and then employ a ma-
jority voting scheme to aggregate the verification results across
multiple rounds. While this method enhances the watermark’s ro-
bustness to some extent, it remains ineffective against forging and
overwriting attacks.

Passport-based Method. This group of methods [9, 10, 31, 49]
integrates the watermark into the normalization layers in neu-
ral networks. Specifically, [9, 10] propose the first passport-based
method, which utilizes additional passport samples (e.g., images) to
generate affine transformation parameters for the normalization lay-
ers, tightly binding them to the model performance. Subsequently,
[49] integrate a private passport-aware branch into the normaliza-
tion layers, which is trained jointly with the target model and is
used solely for watermark verification. Recently, [31] argue that
binding the model performance is insufficient to defend against
forging attacks, and thus propose establishing a hash mapping
between passport samples and watermarks.

Activation-based Method. This category of methods [27, 29,
40] incorporates watermarks into the activation maps of interme-
diate layers in neural networks. For instance, [40] incorporate the
watermark into the mean vector of activation maps generated by
predetermined trigger samples. Similarly, [27] directly integrate
the watermark into the activation maps associated with the trigger
samples. Additionally, [29] embed the watermark into the hidden
memory state of a recurrent neural network.

3 Preliminary
In this section, we elaborate on the principle and vulnerability of
the first weight-based method [44], which we refer to as Vanil-
laMark, serving as the foundation for subsequent weight-based
watermarking methods [12, 25, 28, 30]. Specifically, it begins by
selecting, averaging, and flattening a subset of model parameters
𝜃 into a parameter vector w̃ ∈ R𝑘 . A secret key matrix K ∈ R𝑘×𝑛

is then used to derive the extracted watermark via b̃ = 𝛿 (w̃K),
where 𝛿 (·) denotes the sigmoid function. To embed a target binary
watermark b into w̃, VanillaMark optimizes the following objective:

min
𝜃

L𝑚 + 𝜆L𝑒 (b̃, b), (1)

where L𝑚 denotes the main task loss (e.g., classification loss),
L𝑒 (·, ·) represents the binary cross-entropy loss, and 𝜆 is a pos-
itive trade-off hyper-parameter. Although VanillaMark is simple
and pioneering, and can resist fine-tuning and pruning attacks [44],
it remains vulnerable to the following two critical threats:
• Forging Attack: An adversary can learn the secret key for any

arbitrary watermark. Specifically, given a counterfeit watermark
b𝑎 , the attacker can learn a corresponding key K𝑎 by minimizing
L𝑒 (b𝑎, b̃𝑎), i.e., K𝑎 = argminK𝑎

L𝑒 (b𝑎, b̃𝑎).
• Overwriting Attack: VanillaMark neither protects the confiden-

tiality of watermarked parameters nor ensures non-overlapping
usage between the model owner’s and the adversary’s param-
eters. Once the watermarked parameters are identified, an ad-
versary can forge a counterfeit watermark tuple {K𝑎, b𝑎} and
embed b𝑎 into the model parameters by optimizing min𝜃 L𝑚 +
𝜆L𝑒 (b𝑎, b̃). Since different watermarks often induce conflicting

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Hashed Watermark as a Filter: Boosting Robustness of Weight-based Neural-Network Watermarking CCS ’25, October 13-17, 2025, Taipei, Taiwan

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

⋯
Pruning
Attack

⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

Watermarked Model𝕄[𝜃!∗] Attacked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

000⋯ 100

Watermarked Model𝕄[𝜃!∗]

⋯
Forging
Attack

⋯

Extracted
Watermark

100⋯ 010

100⋯ 010
Counterfeit
Watermark

⋯
Overwriting

Attack
⋯

101⋯000Extracted
Watermark

Extracted
Watermark

100⋯ 010

100⋯ 010

Original
Secret Key𝐊!

Counterfeit
Secret Key 𝐊"

𝐛"

Forging Attack Success !

Pruning Attack Success !

𝐛"010⋯ 101
Original

Watermark𝐛!
Overwriting Attack Success !

010⋯ 101
Original

Watermark𝐛!

Counterfeit
Watermark

Counterfeit
Secret Key 𝐊"

Original
Secret Key𝐊!

𝐏 𝕄 𝜃!∗ = 𝐏(𝕄[𝜃!∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

⋯
Fine-tuning

Attack
⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

100⋯ 011

Original
Secret Key 𝐊!

Fine-tuning Attack Success !

010⋯ 101
Original

Watermark𝐛!

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

,𝐛

,𝐛 ,𝐛

,𝐛,𝐛

(a) Forging Attack

⋯
Pruning
Attack

⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

Watermarked Model𝕄[𝜃!∗] Attacked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

000⋯ 100

Watermarked Model𝕄[𝜃!∗]

⋯
Forging
Attack

⋯

Extracted
Watermark

100⋯ 010

100⋯ 010
Counterfeit
Watermark

⋯
Overwriting

Attack
⋯

101⋯000Extracted
Watermark

Extracted
Watermark

100⋯ 010

100⋯ 010

Original
Secret Key𝐊!

Counterfeit
Secret Key 𝐊"

𝐛"

Forging Attack Success !

Pruning Attack Success !

𝐛"010⋯ 101
Original

Watermark𝐛!
Overwriting Attack Success !

010⋯ 101
Original

Watermark𝐛!

Counterfeit
Watermark

Counterfeit
Secret Key 𝐊"

Original
Secret Key𝐊!

𝐏 𝕄 𝜃!∗ = 𝐏(𝕄[𝜃!∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

⋯
Fine-tuning

Attack
⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

100⋯ 011

Original
Secret Key 𝐊!

Fine-tuning Attack Success !

010⋯ 101
Original

Watermark𝐛!

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

,𝐛

,𝐛 ,𝐛

,𝐛,𝐛

(b) Overwriting Attack

⋯
Pruning
Attack

⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

Watermarked Model𝕄[𝜃!∗] Attacked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

000⋯ 100

Watermarked Model𝕄[𝜃!∗]

⋯
Forging
Attack

⋯

Extracted
Watermark

100⋯ 010

100⋯ 010
Counterfeit
Watermark

⋯
Overwriting

Attack
⋯

101⋯000Extracted
Watermark

Extracted
Watermark

100⋯ 010

100⋯ 010

Original
Secret Key𝐊!

Counterfeit
Secret Key 𝐊"

𝐛"

Forging Attack Success !

Pruning Attack Success !

𝐛"010⋯ 101
Original

Watermark𝐛!
Overwriting Attack Success !

010⋯ 101
Original

Watermark𝐛!

Counterfeit
Watermark

Counterfeit
Secret Key 𝐊"

Original
Secret Key𝐊!

𝐏 𝕄 𝜃!∗ = 𝐏(𝕄[𝜃!∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

⋯
Fine-tuning

Attack
⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

100⋯ 011

Original
Secret Key 𝐊!

Fine-tuning Attack Success !

010⋯ 101
Original

Watermark𝐛!

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

,𝐛

,𝐛 ,𝐛

,𝐛,𝐛

(c) Fine-tuning Attack

⋯
Pruning
Attack

⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

Watermarked Model𝕄[𝜃!∗] Attacked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

000⋯ 100

Watermarked Model𝕄[𝜃!∗]

⋯
Forging
Attack

⋯

Extracted
Watermark

100⋯ 010

100⋯ 010
Counterfeit
Watermark

⋯
Overwriting

Attack
⋯

101⋯000Extracted
Watermark

Extracted
Watermark

100⋯ 010

100⋯ 010

Original
Secret Key𝐊!

Counterfeit
Secret Key 𝐊"

𝐛"

Forging Attack Success !

Pruning Attack Success !

𝐛"010⋯ 101
Original

Watermark𝐛!
Overwriting Attack Success !

010⋯ 101
Original

Watermark𝐛!

Counterfeit
Watermark

Counterfeit
Secret Key 𝐊"

Original
Secret Key𝐊!

𝐏 𝕄 𝜃!∗ = 𝐏(𝕄[𝜃!∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

⋯
Fine-tuning

Attack
⋯

Extracted
Watermark

Watermarked Model𝕄[𝜃!∗] Attacked Model 𝕄[𝜃#∗]

100⋯ 011

Original
Secret Key 𝐊!

Fine-tuning Attack Success !

010⋯ 101
Original

Watermark𝐛!

𝐏 𝕄 𝜃!∗ ≈ 𝐏(𝕄[𝜃"∗])

,𝐛

,𝐛 ,𝐛

,𝐛,𝐛

(d) Pruning Attack

Figure 1: Illustrations of different types of attacks. (a) Forging attack: the adversary aims to generate a counterfeit secret
key–watermark pair without modifying the model parameters. (b) Overwriting attack: the adversary embeds a counterfeit
watermark to overwrite the original one. (c) Fine-tuning attack: the adversary fine-tunes the model in an attempt to remove
the original watermark. (d) Pruning attack: the adversary prunes the model parameters to remove the original watermark.

gradients on the same parameters, the newly embedded water-
mark can easily overwrite the original one.

4 Problem Formulations
In this section, we introduce several key formulations used through-
out this paper.

4.1 Weight-based NNW
In the weighted-based NNW problem, we are provided with a train-
ing dataset D and a watermark tuple W = {K, b}, where K is a
secret key and b is a binary watermark consisting of ones and zeros.
The goal is to train a watermarked model M(𝜃∗) using D such
that the model parameters 𝜃∗ effectively embed b while satisfying
the following criteria: (i) The watermark should minimally affect
the model performance and be difficult for adversaries to detect;
and (ii) The watermark must be resilient against a wide range of
adversarial attacks.

4.2 Threat Model
We assume that an adversary can illegally obtain a watermarked
model and identify the layers containing the watermark. Addi-
tionally, the adversary has access to the training datasets but is
constrained by limited computational resources. As discussed above,
this paper primarily focuses on forging and overwriting attacks,
while also considering fine-tuning and pruning attacks. Those at-
tack scenarios are described below.

• Forging Attack: As illustrated in Figure 1(a), in a forging attack,
the adversary aims to generate a counterfeit secret key–watermark
pair without modifying the model parameters. Specifically, the
adversary first randomly forges a counterfeit watermark and
then derives a corresponding secret key by optimizing it while
keeping the model parameters frozen [9, 10].

• Overwriting Attack: As presented in Figure 1(b), in an over-
writing attack, the adversary embeds a counterfeit watermark to
overwrite the original watermark [30].

• Fine-tuning Attack: As depicted in Figure 1(c), in a fine-tuning
attack, the adversary fine-tunes the model in an attempt to re-
move the original watermark.

• Pruning Attack: As shown in Figure 1(d), in a pruning attack,
the adversary attempts to remove the original watermark by
pruning the model parameters.

4.3 Success Criteria for Threat Model
Building on insights from [9, 10, 24, 50], a successful attack on a wa-
termarked model typically requires the adversary to either (i) forge
a counterfeit watermark without altering the model parameters,
or (ii) remove the original watermark through parameter modifica-
tions, all while preserving model performance. If the adversary only
embeds a counterfeit watermark without removing the original one,
the resulting model contains both. In this case, the model owner
can submit a version containing only the original watermark to an
authoritative third-party for verification. In contrast, the adversary

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CCS ’25, October 13-17, 2025, Taipei, Taiwan Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝟏 𝟎 𝟏 𝟎

𝑤!,!, 𝑤!,#, 𝑤!,$, 𝑤!,%, 𝑤!,&, 𝑤!,', 𝑤!,(, 𝑤!,), 𝑤#,!, 𝑤#,#, 𝑤#,$, 𝑤#,%, 𝑤#,&, 𝑤#,', 𝑤#,(, 𝑤#,) 𝑤!,!, 𝑤!,#, 𝑤!,$, 𝑤!,%, 𝑤!,&, 𝑤!,', 𝑤!,(, 𝑤!,), 𝑤#,!, 𝑤#,#, 𝑤#,$, 𝑤#,%, 𝑤#,&, 𝑤#,', 𝑤#,(, 𝑤#,)

𝑤!,#, 𝑤!,$, 𝑤!,', 𝑤!,(, 𝑤#,#, 𝑤#,$, 𝑤#,', 𝑤#,(

𝑤!,$, 𝑤!,', 𝑤#,$, 𝑤#,'

𝑤!,!, 𝑤!,$, 𝑤!,&, 𝑤!,(, 𝑤#,!, 𝑤#,$, 𝑤#,&, 𝑤#,(

𝑤!,!, 𝑤!,&, 𝑤#,!, 𝑤#,&

First round of filtering

Second round of filtering
AdversaryModel Owner

𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 0 𝟏 𝟏 𝟎 0 𝟏 𝟏 𝟎0 𝟏 𝟏 𝟎0 𝟏 𝟏 𝟎

𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 0 𝟏 𝟏 𝟎 0 𝟏 𝟏 𝟎

First round of filtering

Second round of filtering

Hashed Watermark Hashed Watermark

Figure 2: Illustration of hashed watermark filter. Here, the model owner’s hashed watermark is [1, 0, 1, 0], while the adversary’s
is [0, 1, 1, 0]. Without filtering, all 16 parameters overlap. After one round of filtering, each retains eight parameters, with four
overlapping. A second round leaves four parameters each, with no overlap.

cannot provide a model with only the counterfeit watermark, as the
original watermark remains intact. As a result, the adversary can-
not convincingly claim ownership unless they train a new model
embedded solely with their own watermark. This not only makes
stealing the original model unnecessary but also incurs significant
training costs. Accordingly, we define the success criteria for each
type of attack as follows:

• Success Criteria for Forging Attack: Forge a counterfeit wa-
termark that passes verification without modifying the model
parameters.

• Success Criteria for Overwriting Attack: Remove the original
watermark and embed a counterfeit one by modifying the model
parameters, while maintaining model performance.

• Success Criteria for Fine-tuning Attack: Remove the origi-
nal watermark through fine-tuning, while maintaining model
performance.

• Success Criteria for Pruning Attack: Remove the original
watermark through parameter pruning, while maintainingmodel
performance.

5 Methodology
In this section, we present the proposed NeuralMark.

5.1 Motivation
As discussed in Section 3, most weight-based methods struggle to si-
multaneously defend against both forging and overwriting attacks.
On the one hand, forging attacks aim to generate a counterfeit
watermark and derive the corresponding secret key via gradient
backpropagation, while keeping the model parameters fixed. De-
fending against such attacks requires disrupting gradient computa-
tion to hinder reverse-engineering. On the other hand, overwriting
attacks attempt to remove the original watermark by embedding a
counterfeit one. Once watermarked parameters are identified, the
adversary can overwrite the original watermark. Since each water-
mark updates the model parameters in a distinct and often conflict-
ing direction, embedding a new watermark can easily disrupt the
original one. Therefore, to resist such attacks, it is essential to keep
the watermarked parameters confidential and ensure that those
used by the model owner and the adversary are non-overlapping.

To address both threats, we propose a hashed watermark filter
that leverages an irreversible binary watermark as a private fil-
ter to restrict embedding to a secret subset of model parameters.
Specifically, we utilize a hash function to generate an irreversible
binary watermark from a secret key, which is then applied as a filter
to select the model parameters for embedding. This design clev-
erly intertwines the embedding parameters with the hash function,
providing two key properties:

• Gradient Obfuscation: The avalanche effect of hash function
ensures that even minor changes in the input lead to large, un-
predictable changes in the output, effectively impeding gradient
computation and rendering reverse-engineering infeasible.

• Embedding Isolation: Since the hashed watermarks derived
by the model owner and the adversary are distinct, using them
as private filters can effectively reduce the overlap in selected
parameters, especially when the filtering process is performed
repeatedly. As exemplified in Figure 2, the model owner’s hashed
watermark is [1, 0, 1, 0], while the adversary’s is [0, 1, 1, 0]. With-
out filtering, all 16 model parameters are shared, yielding a 100%
overlap ratio. After the first round of filtering, each party retains
eight parameters, with four overlapping, reducing the overlap to
50%. A second filtering round results in four parameters per party,
with zero overlap, achieving a 0% overlap ratio. This progressive
isolation ensures that as filtering continues, the overlap between
the model owner’s and the adversary’s selected parameters is
significantly reduced. Consequently, it becomes increasingly dif-
ficult for the adversary to identify and manipulate the owner’s
watermarked parameters, even when increasing the embedding
strength of their watermarks, thereby preserving the integrity
of the original watermark against overwriting attacks.

In summary, those properties enable the hashed watermark filter
to offer strong resistance against both forging and overwriting
attacks, forming the core of NeuralMark. Next, we elaborate on the
NeuralMark.

5.2 NeuralMark
As depicted in Figure 3, NeuralMark consists of three primary
steps: (i) watermark generation; (ii) watermark embedding; and (iii)
watermark verification. Next, we detail how each step works.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Hashed Watermark as a Filter: Boosting Robustness of Weight-based Neural-Network Watermarking CCS ’25, October 13-17, 2025, Taipei, Taiwan

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

ModelSamples

⋮ ⋯ 𝓛𝒎

Labels

010⋯ 101

𝓛𝒆

010⋯ 101
Hashed

Watermark
Filtering

Average
Pooling

Sigmoid
Mapping

Hashed Watermark

Extracted Watermark

Secret
Key

010⋯ 101

Verification

Watermarked Model

⋮ ⋮

!

Predictions

⋯

010⋯ 101
Average
Pooling

Sigmoid
Mapping

Extracted Watermark
!

010⋯ 101
Hashed Watermark

010⋯ 101
Hashed

Watermark
Filtering

Secret
Key

Secret
Key

SHAKE
-256

010⋯ 101

Hashed Watermark

Hashed Watermark Hashed Watermark

(a) Watermark Generation

ModelSamples

⋮ ⋯ 𝓛𝒎

Labels

010⋯ 101

𝓛𝒆

010⋯ 101
Hashed

Watermark
Filtering

Average
Pooling

Sigmoid
Mapping

Hashed Watermark

Extracted Watermark

Secret
Key

010⋯ 101

Verification

Watermarked Model

⋮ ⋮

!

Predictions

⋯

010⋯ 101
Average
Pooling

Sigmoid
Mapping

Extracted Watermark
!

010⋯ 101
Hashed Watermark

010⋯ 101
Hashed

Watermark
Filtering

Secret
Key

Secret
Key

SHAKE
-256

010⋯ 101

Target Watermark

Hashed Watermark Hashed Watermark

(b) Watermark Embedding

ModelSamples

⋮ ⋯ 𝓛𝒎

Labels

010⋯ 101

𝓛𝒆

010⋯ 101
Hashed

Watermark
Filtering

Average
Pooling

Sigmoid
Mapping

Hashed Watermark

Extracted Watermark

Secret
Key

010⋯ 101

Verification

Watermarked Model

⋮ ⋮

!

Predictions

⋯

010⋯ 101
Average
Pooling

Sigmoid
Mapping

Extracted Watermark
!

010⋯ 101
Hashed Watermark

010⋯ 101
Hashed

Watermark
Filtering

Secret
Key

Secret
Key

SHAKE
-256

010⋯ 101

Target Watermark

Hashed Watermark Hashed Watermark

(c) Watermark Verification

Figure 3: Illustrations of the processes for watermark generation (a), embedding (b), and verification (c).

5.2.1 Hashed Watermark Generation. As aforementioned, we con-
struct a hash-based mapping from a secret key to a binary water-
mark, as shown in Figure 3(a). Formally, the watermark b ∈ {0, 1}𝑛
is generated by b = H(K), where K ∈ R𝑘×𝑛 is a secret key matrix
with elements drawn from a random distribution (e.g., normalized
Gaussian distribution), H(·) denotes a hash function, and 𝑛 indi-
cates the length of the watermark. To accommodate various applica-
tion requirements, we adopt SHAKE-256 [8], an extendable-output
function from the SHA-3 family that allows dynamic adjustment
of output length. Furthermore, auxiliary content C (e.g., textual
descriptors or unique identifiers) can also be incorporated into
the hash function, yielding b = H(K| |C), where | | denotes the
concatenation operation. This mechanism enables context-aware
watermark generation without compromising the avalanche effect
of the hash function. For simplicity, we omit auxiliary content in
the subsequent experiments.

5.2.2 Watermark Embedding. As illustrated in Figure 3(b), to em-
bed the hashed watermark b into the modelM(𝜃), we first select
and flatten a subset of parameters (e.g., one-layer parameters) from
𝜃 into a parameter vector w ∈ R𝑚 . Then, we utilize the hashed
watermark filter to select the model parameters for embedding.
Specifically, let w(0) = w be the initial parameter vector. In the
𝑟 -th (𝑟 ∈ {1, · · · , 𝑅}) filtering round, the watermark b is repeated to
match the length of w(𝑟−1) , forming b(𝑟) , with any excess parame-
ters in w(𝑟−1) discarded. The parameter vector w(𝑟) is constructed
by selecting the elements from w(𝑟−1) at positions where b(𝑟)

equals one, i.e., w(𝑟) =
[
𝑤

(𝑟−1)
𝑖

| 𝑖 ∈ { 𝑗 | 𝑏 (𝑟)
𝑗

= 1}
]
, where

𝑤
(𝑟−1)
𝑖

is the 𝑖-th element ofw(𝑟−1) , and 𝑏 (𝑟)
𝑗

is the 𝑗-th element of
b(𝑟) . After completing the whole watermark filtering process, the
filtered parameter vectorw(𝑅) is obtained. Next, we adopt the aver-
age pooling AVG(·) operation [13] to calculate the final parameters
as w̃ = AVG(w(𝑅)) ∈ R𝑘 . This operation aggregates parameters
across broader regions, thereby enhancing robustness against pa-
rameter perturbations caused by fine-tuning and pruning attacks.
Finally, we formulate the overall optimal objective as

min
𝜃

L𝑚 + 𝜆L𝑒 (b̃, b), (2)

where L𝑚 denotes the main task loss (e.g., classification loss),
L𝑒 (·, ·) represents the binary cross-binary loss, b̃ = 𝛿 (w̃K) denotes
the extracted watermark, with 𝛿 (·) being the sigmoid function, and

𝜆 is a positive trade-off hyper-parameter. By minimizing Eq. (2),
the watermark can be embedded into model parameters during the
main task training. The watermark embedding process is summa-
rized in Algorithm 1.

Algorithm 1 Watermark Embedding in NeuralMark
Input: Training datasetD, secret key K, index of embedding layer

I, hyper-parameters 𝜆, 𝑇 , and filter rounds 𝑅.
Output: Watermarked modelM(𝜃∗).
1: Randomly initialize the model parameter 𝜃 .
2: Generate the watermark b = H(K).
3: for 𝑡 = 0 to 𝑇 − 1 do
4: Use I to select a subset from 𝜃 and flatten it to create w.
5: for 𝑟 = 1 to 𝑅 do
6: Perform watermark filtering on w to obtain w(𝑟) .
7: end for
8: Apply average pooling on w(𝑅) to yield w̃.
9: Execute sigmoid mapping on w̃K to produce b̃.
10: Update 𝜃 based on Eq. (2).
11: end for

5.2.3 Watermark Verification. The watermark verification process
is similar to the embedding process, as depicted in Figure 3(c).
Concretely, upon identifying a potentially unauthorized model, the
relevant subset of model parameters is extracted and subjected
to hashed watermark filtering and average pooling to derive an
extracted watermark b̃. This extracted watermark is then compared
to the model owner’s watermark b using the watermark detection
rate, which is defined by

𝜌 =
1
𝑛

𝑛∑︁
𝑖=1

1
[
𝑏𝑖 = T (𝑏𝑖)

]
, (3)

where T (𝑥) is a threshold function that outputs 1 if 𝑥 > 0.5 and
0 otherwise, and 1(𝜓) is an indicator function that returns 1 if 𝜓
is true and 0 otherwise. The unauthorized model is confirmed to
belong to the model owner if both of the following conditions are
satisfied:
• The watermark detection rate 𝜌 exceeds a theoretical security

boundary 𝜌∗, which will be theoretically analyzed later.
• The watermark must correspond to the output of the hash func-

tion applied to the secret key, ensuring cryptographic consistency
with the predefined hash function.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CCS ’25, October 13-17, 2025, Taipei, Taiwan Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

The watermark verification process is outlined in Algorithm 2.

Algorithm 2Watermark Verification in NeuralMark

Input: Watermarked model M(𝜃∗), secret key K, watermark b, in-
dex of embedding layer I, filter rounds 𝑅, and security boundary
𝜌∗.

Output: True (Verification Success) or False (Verification Failure).
1: Use I to select a subset from 𝜃∗ and flatten it to create w.
2: for 𝑟 = 1 to 𝑅 do
3: Perform watermark filtering on w to obtain w(𝑟) .
4: end for
5: Apply average pooling on w(𝑅) to yield w̃.
6: Execute sigmoid mapping on w̃K to produce b̃.
7: Calculate watermark detection rate 𝜌 based on Eq. (3).
8: if 𝜌 ≥ 𝜌∗ andH(K) = b then
9: return True
10: else
11: return False
12: end if

5.3 Theoretical Analysis
We present a theoretical analysis to determine the security bound-
ary of NeuralMark in Proposition 5.1.

Proposition 5.1. Under the assumption that the hash function pro-
duces uniformly distributed outputs [4], for a model watermarked by
NeuralMark with a watermark tuple {K, b}, where b = H(K), if an
adversary attempts to forge a counterfeit watermark tuple {K′, b′}
such that b′ = H(K′) and K′ ≠ K, then the probability of achieving
a watermark detection rate of at least 𝜌 (i.e., ≥ 𝜌) is upper-bounded
by 1

2𝑛
∑𝑛−⌈𝜌𝑛⌉
𝑖=0

(𝑛
𝑖

)
.

The proof of Proposition 5.1 is provided in Appendix A. Propo-
sition 5.1 provides a theoretical benchmark for establishing the
security boundary of the watermark detection rate. Specifically,
with 𝑛 = 256, if the watermark detection rate 𝜌 ≥ 88.28%, the
probability of this occurring by forgery is less than 1/2128. This
negligible probability allows us to confirm ownership with high
confidence. Thus, we set 𝑛 = 256 and use 88.28% as the security
bound for the watermark detection rate in the experiments.

6 Experiments
In this section, we evaluate NeuralMark across a variety of datasets,
architectures, and tasks.

6.1 Experimental Setup
Datasets and Architectures. We use five image classification
datasets: CIFAR-10, CIFAR-100 [20], Caltech-101 [11], Caltech-256
[14], and TinyImageNet [22], as well as one text generation dataset,
E2E [37]. Additionally, we utilize 11 image classification architec-
tures, including eight Convolutional architectures: AlexNet [21],
VGG-13, VGG-16 [41], GoogLeNet [43], ResNet-18, ResNet-34 [16],
WideResNet-50 [48], and MobileNet-V3-L [17], as well as three
Transformer architectures: ViT-B/16 [6], Swin-V2-B, and Swin-V2-
S [33]. Furthermore, we adopt two text generation architectures:
GPT-2-S and GPT-2-M [39].

Baselines and Metrics. We compare NeuralMark with Vanilla-
Mark [44], and two state-of-the-art weight-basedmethods proposed
in [30] and [25] (see Section 2 for details). For clarity, we refer to
those two methods as GreedyMark and VoteMark, respectively.
Additionally, we include a comparison with a method that does not
involve watermark embedding, referred to as Clean. For the image
classification task, we evaluate model performance using classifi-
cation accuracy, while the watermark embedding task is assessed
based on the watermark detection rate. As for the text generation
task, we follow [18] and evaluate model performance using BLEU,
NIST, MET, ROUGE-L, and CIDEr metrics, with the watermark
embedding task assessed based on the watermark detection rate.

Implementation Details. We implement NeuralMark using
the PyTorch framework [38] and conduct all experiments on three
NVIDIA V100 series GPUs. The specific hyper-parameters are sum-
marized below.

• For all the image classification architectures, we train for 200
epochs with a multi-step learning rate schedule from scratch,
with learning rates set to 0.01, 0.001, and 0.0001 for epochs 1 to
100, 101 to 150, and 151 to 200, respectively. We apply a weight
decay of 5×10−4 and set themomentum to 0.9. The batch sizes for
the training and test datasets are set to 64 and 128, respectively.
In addition, we set hyper-parameter 𝜆 to 1 and the number of
filter rounds 𝑅 to 4.

• For the GPT-2-S and GPT-2-M architectures, we utilize the Low-
Rank Adaptation (LoRA) technique [18]. Each architecture is
trained for 5 epochs with a linear learning rate scheduler, starting
at 2 × 10−4. We set the warm-up steps to 500, apply a weight
decay with a coefficient of 0.01, and enable bias correction in the
AdamW optimizer [34]. The dimension and the scaling factor for
LoRA are set to 4 and 32, respectively, with a dropout probability
of 0.1 for the LoRA layers. The batch sizes for the training and test
sets are 8 and 4, respectively. Moreover, we set hyper-parameter
𝜆 to 1 and the number of filter rounds 𝑅 to 10.

6.2 Fidelity Evaluation

Question 1. Is NeuralMark capable of reliably em-
bedding watermarks while preserving model perfor-
mance across a variety of datasets, architectures, and
tasks?

Diverse Datasets. First, we evaluate the influence of watermark
embedding on the model performance across diverse datasets. Ta-
ble 1 reports the results across five image datasets using AlexNet
and ResNet-18. We observe that all methods have minimal impact
on model performance while successfully embedding watermarks,
indicating that NeuralMark and other methods maintain model
performance across diverse datasets during watermark embedding.

Various Architectures. Next, we assess the impact of Neural-
Mark on model performance across various architectures. Table 2
lists the results of NeuralMark on the CIFAR-100 dataset using VGG-
13, VGG-16, GoogLeNet, ResNet-34, WideResNet-50, MobileNet-V3-
L, ViT-B/16, Swin-V2-B, and Swin-V2-S. We find that NeuralMark
maintains a 100% watermark detection rate across a wide range of
architectures while exerting minimal impact on model performance.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Hashed Watermark as a Filter: Boosting Robustness of Weight-based Neural-Network Watermarking CCS ’25, October 13-17, 2025, Taipei, Taiwan

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Comparison of classification accuracy (%) across distinct datasets using AlexNet and ResNet-18. Watermark detection
rates are omitted as they all reach 100%.

Dataset
Clean NeuralMark VanillaMark GreedyMark VoteMark

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-10 91.05 94.76 90.93 94.50 91.01 94.87 90.88 94.69 90.86 94.79
CIFAR-100 68.24 76.23 68.57 76.34 68.43 76.22 68.31 76.14 68.53 76.74
Caltech-101 68.07 68.83 68.38 68.47 68.54 68.99 68.59 69.08 68.88 67.91
Caltech-256 44.27 54.09 44.55 53.71 44.73 53.47 44.64 53.28 44.43 54.71

TinyImageNet 42.42 53.48 42.31 53.22 42.50 53.36 42.94 53.31 42.50 53.47

Table 2: Comparison of classification accuracy (%) on CIFAR-100 using various architectures. Watermark detection rates are
omitted as they all reach 100%.

Method ViT-B/16 Swin-V2-B Swin-V2-S VGG-16 VGG-13 ResNet-34 WideResNet-50 GoogLeNet MobileNet-V3-L

Clean 39.07 52.99 55.88 72.75 72.71 77.06 59.67 60.71 61.11
NeuralMark 39.22 53.57 55.87 72.61 71.49 77.03 58.41 60.02 61.8

Table 3: Comparison on E2E using GPT-2-S and GPT-2-M. Watermark detection rates are omitted as they all reach 100%.

GPT-2-S BLEU NIST MET ROUGE-L CIDEr GPT-2-M BLEU NIST MET ROUGE-L CIDEr

Clean 69.36 8.76 46.06 70.85 2.48 Clean 68.7 8.69 46.38 71.19 2.5
NeuralMark 69.59 8.79 46.01 70.85 2.48 NeuralMark 67.73 8.57 46.07 70.66 2.47

Those observations suggest that NeuralMark is highly generalizable
across various architectures.

Text Generation Tasks. Finally, we evaluate the effect of Neu-
ralMark on the text generation tasks. Table 3 presents the results of
NeuralMark applied to the GPT-2-S and GPT-2-M architectures on
the E2E dataset. We can observe that NeuralMark achieves a 100%
watermark detection rate while maintaining nearly lossless model
performance. Those results validate the potential of NeuralMark in
safeguarding the ownership of generative models.

Overall, NeuralMark demonstrates consistent fidelity across var-
ious datasets, architectures, and tasks.

6.3 Robustness Evaluation

Question 2. Is NeuralMark capable of withstanding
forging attacks?

We adopt the setting detailed in Section 4.2 to assess the ro-
bustness of NeuralMark against forging attacks. Concretely, for
VanillaMark and VoteMark, we first randomly generate a coun-
terfeit watermark and then learn the corresponding secret key by
freezing the model parameters. Since GreedyMark does not require
a secret key, we utilize 10 sets of randomly forged watermarks to
directly verify them using the watermarked model. For NeuralMark,
due to the avalanche effect of hash functions, a method similar to
GreedyMark is employed, where 10 sets of randomly forged water-
marks are directly verified using the watermarked model. Table 4
presents the watermark detection rates of forging attacks, and we
present the following significant observations. (1) For VanillaMark
and VoteMark, a pair of counterfeited secret key and watermark
can be successfully learned through reverse-engineering, indicating

Table 4: Comparison of watermark detection rate (%) against
forging attacks using ResNet-18.

Dataset NeuralMark VanillaMark GreedyMark VoteMark

CIFAR-10 48.56 100.00 50.70 100.00
CIFAR-100 49.41 100.00 52.85 100.00

their vulnerability to forging attacks. (2) NeuralMark and Greedy-
Mark demonstrate robust resistance against forging attacks, which
aligns with our expectations. In summary, those results suggest
that NeuralMark effectively withstands forging attacks.

Question 3. Is NeuralMark robust to overwriting at-
tacks, especially with varying attack strength levels?

We follow the setting outlined in Section 4.2 to assess the robust-
ness of NeuralMark against overwriting attacks. Specifically, we
analyze two key factors: the hyper-parameter 𝜆 in Eq. (2) and the
learning rate 𝜂. Here, 𝜆 controls the strength of the watermark em-
bedding, with larger values leading to stronger embedding, while 𝜂
primarily affects model performance.

Distinct Values of 𝜆. First, we investigate the influence of 𝜆
in overwriting attacks. Specifically, we set 𝜆 to 1, 10, 50, 100, and
1000, respectively. Table 5 presents the results on the CIFAR-100 to
CIFAR-10 and CIFAR-10 to CIFAR-100 tasks using ResNet-18. We
report only the original watermark detection rate, as the adversary’s
watermark detection rate reaches 100%. As defined in the success
criterion in Section 4.3, the original watermark must be effectively
removed for overwriting attacks to be deemed successful. Thus, the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

CCS ’25, October 13-17, 2025, Taipei, Taiwan Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Comparison of resistance to overwriting attacks at various trade-off hyper-parameters (𝜆) and learning rates (𝜂) using
ResNet-18. Values (%) inside and outside the bracket are watermark detection rate and classification accuracy, respectively.

Overwriting 𝜆 NeuralMark VanillaMark GreedyMark VoteMark 𝜂 NeuralMark VanillaMark GreedyMark VoteMark

CIFAR-100
to

CIFAR-10

1 93.65 (100) 93.30 (100) 93.45 (48.82) 93.63 (100) 0.001 93.65 (100) 93.30 (100) 93.45 (48.82) 93.63 (100)
10 93.44 (100) 93.58 (100) 93.29 (51.17) 93.13 (100) 0.005 91.76 (99.60) 92.17 (73.04) 92.13 (50.00) 92.45 (78.90)
50 93.46 (100) 93.50 (100) 93.07 (55.07) 93.39 (100) 0.01 91.58 (92.18) 91.79 (62.10) 91.53 (49.60) 91.76 (60.15)
100 93.53 (100) 92.95 (94.53) 93.18 (54.29) 93.53 (96.48) 0.1 75.2 (50.78) 79.68 (47.26) 72.42 (53.12) 70.92 (54.29)
1000 93.09 (100) 92.89 (53.90) 92.85 (49.60) 92.77 (59.37) 1 10.00 (44.53) 10.00 (53.51) 10.00 (48.04) 10.00 (53.51)

CIFAR-10
to

CIFAR-100

1 71.78 (100) 72.68 (98.82) 71.34 (55.07) 72.97 (98.43) 0.001 71.78 (100) 72.68 (98.82) 71.34 (55.07) 72.97 (98.43)
10 72.6 (100) 72.03 (98.04) 72.30 (49.21) 72.08 (98.04) 0.005 71.04 (99.60) 70.02 (69.53) 70.25 (48.04) 71.11 (71.09)
50 72.73 (100) 72.45 (95.70) 70.92 (46.87) 72.38 (97.26) 0.01 69.14 (96.48) 69.02 (59.76) 69.25 (46.09) 68.88 (62.11)
100 71.49 (100) 71.92 (92.18) 72.05 (48.04) 72.72 (93.75) 0.1 51.88 (60.54) 51.76 (53.90) 51.71 (51.56) 51.74 (56.25)
1000 71.81 (100) 71.35 (57.42) 71.74 (51.95) 70.73 (56.64) 1 1.00 (44.53) 1.00 (53.15) 1.00 (50.00) 1.00 (53.51)

overwriting attack experiments focus solely on whether the original
watermark can be successfully removed. We can summarize several
insightful observations.

• As 𝜆 increases, the original watermark detection rate of Neural-
Mark remains at 100%, while those of VanillaMark, GreedyMark,
and VoteMark significantly decline. In particular, when 𝜆 = 1000,
the embedding strength of the adversary’s watermark is 1000
times greater than that of the original watermark. At this point,
the original watermark detection rates for NeuralMark, Vanilla-
Mark, GreedyMark, and VoteMark on the CIFAR-100 to CIFAR-10
tasks are 100%, 53.90%, 49.60%, and 59.37%, respectively. Those re-
sults indicate that NeuralMark exhibits strong robustness against
overwriting attacks.

• As 𝜆 increases, model performance remains relatively stable.
This is because overwriting attacks jointly train both the main
task and the watermark embedding task, enabling the model
parameters to effectively adapt to both.

Distinct Values of 𝜂. Second, we examine the impact of 𝜂 in
overwriting attacks. Concretely, we set 𝜂 to 0.001, 0.005, 0.01, 0.1,
and 1, respectively. Table 5 lists the results on the CIFAR-100 to
CIFAR-10 and CIFAR-10 to CIFAR-100 tasks using ResNet-18. We
have the following important observations.

• As 𝜂 increases, model performance declines due to its substantial
impact on performance. Thus, the adversary cannot arbitrarily
increase 𝜂 to strengthen the attack.

• At 𝜂 = 0.005, the original watermark detection rates for Vanilla-
Mark, GreedyMark, and VoteMark drop dramatically, whereas
NeuralMark maintains a detection rate close to 100%. When
𝜂 = 0.01, the model performance of NeuralMark on the CIFAR-
100 to CIFAR-10 task decreases by 2.07%, but its original wa-
termark detection rate remains above the security boundary of
88.28% defined in Section 5.3, while those for the other methods
fall significantly. For 𝜂 >= 0.1, although the original watermark
detection rate of NeuralMark drops below the security boundary,
the model performance is completely compromised, indicating
that the attack is ineffective.

On thewhole, all results confirmNeuralMark’s robustness against
overwriting attacks.

Question 4. Is NeuralMark robust to fine-tuning at-
tacks?

We adhere to the setting stated in Section 4.2 to evaluate the
robustness of NeuralMark against fine-tuning attacks.

Fine-tuning All Model Parameters. Following [30], we adopt
the same hyper-parameters for fine-tuning attacks as during train-
ing, except for setting the learning rate to 0.001. Also, we replace
the task-specific classifier with randomly initialized parameters
and optimize all parameters by minimizing the main task loss L𝑚

for 100 epochs. Table 6 reports the results of fine-tuning attacks,
we find that watermarks embedded with NeuralMark maintain a
100% watermark detection rate across all fine-tuning tasks. In con-
trast, watermarks embedded with VanillaMark, GreedyMark, and
VoteMark experience a slight reduction in detection rates across
several tasks. Those results indicate that fine-tuning attacks cannot
effectively remove watermarks embedded with NeuralMark.

Fine-tuning Watermark-Specific Layer Parameters. Fur-
thermore, Table 7 reports the experimental results of fine-tuning
the watermark-specific layer and classifier. As can be seen, the
watermark detection rate remains at 100%, but the model perfor-
mance of all methods exhibits a substantial decline. Specifically,
for the CIFAR-10 to CIFAR-100 task using ResNet-18, the accuracy
achieved by NeuralMark through fine-tuning the watermark em-
bedding layer and classifier is 49.77%, which is markedly lower
than the 71.67% accuracy obtained when all parameters are fine-
tuned. Similar trends are observed across other methods. Those
results indicate that fine-tuning only the watermark embedding
layer and classifier makes it challenging to maintain effective model
performance, resulting in the failure of fine-tuning attacks.

Overall, NeuralMark can effectively defend against fine-tuning
attacks.

Question 5. Is NeuralMark robust to pruning attacks?

We now verify the robustness of NeuralMark in resisting prun-
ing attacks. Specifically, we randomly reset a specified proportion
of model parameters in the watermark embedding layer to zero. Fig-
ure 4 shows the results of pruning attacks on the CIFAR-10 dataset
using AlexNet and ResNet, respectively. As can be seen, as the

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Hashed Watermark as a Filter: Boosting Robustness of Weight-based Neural-Network Watermarking CCS ’25, October 13-17, 2025, Taipei, Taiwan

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 6: Comparison of resistance to fine-tuning attacks. Values (%) inside and outside the bracket are the watermark detection
rate and classification accuracy, respectively.

Fine-tuning
Clean NeuralMark VanillaMark GreedyMark VoteMark

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-100 to CIFAR-10 89.44 93.21 89.11(100) 93.74(100) 89.00(100) 93.29(100) 89.34(99.21) 93.21(100) 89.03(100) 93.59(100)
CIFAR-10 to CIFAR-100 65.46 72.17 64.60(100) 71.67(100) 65.03(92.18) 72.49(97.26) 64.57(98.82) 72.06(100) 64.83(96.09) 72.27(98.04)

Caltech-256 to Caltech-101 72.69 76.93 73.55(100) 76.60(100) 72.90(100) 78.48(100) 73.12(100) 77.19(100) 72.90(100) 77.41(100)
Caltech-101 to Caltech-256 43.39 46.48 43.15(100) 44.42(100) 43.21(98.43) 45.69(99.60) 43.47(99.60) 45.25(100) 43.78(98.43) 45.29(100)

Table 7: Comparison of resistance to fine-tuning attacks against watermark embedding layer using ResNet-18. Values (%) inside
and outside the bracket are the watermark detection rate and classification accuracy, respectively.

Fine-tuning
Clean NeuralMark VanillaMark GreedyMark VoteMark

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-100 to CIFAR-10 85.55 89.15 85.35(100) 88.83(100) 85.48(91.01) 89.35(85.93) 80.41(96.48) 76.15(94.14) 84.97(89.06) 89.66(85.54)
CIFAR-10 to CIFAR-100 58.96 49.74 58.50(100) 49.77(100) 58.75(74.21) 49.97(70.31) 51.75(97.65) 19.94(82.42) 58.81(80.07) 49.08(71.87)

Caltech-256 to Caltech-101 47.65 74.09 71.29(100) 73.12(100) 71.56(100) 74.03(100) 72.04(100) 68.45(100) 71.62(100) 72.47(99.60)
Caltech-101 to Caltech-256 40.61 40.00 40.34(100) 40.34(100) 40.71(96.09) 39.04(93.36) 40.68(100) 36.45(98.82) 39.52(95.31) 39.73(93.75)

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(a) NeuralMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(b) VanillaMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(c) GreedyMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(d) VoteMark

Figure 4: Comparison of resistance to pruning attacks at various pruning ratios on CIFAR-10 using AlexNet and ResNet-18.

pruning ratio increases, the performance of NeuralMark degrades
while the detection rate remains nearly 100%. This indicates Neural-
Mark’s robustness against pruning attacks. Moreover, we observe
that both VanillaMark and VoteMark exhibit strong resistance to
pruning attacks, while GreedyMark demonstrates relatively weak
resistance. One possible reason is that GreedyMark depends on
several important parameters, and their removal may affect its ro-
bustness. More results of pruning attacks across distinct datasets
are provided in Appendix B. All the results suggest that NeuralMark
effectively resists pruning attacks.

6.4 Hashed Watermark Filter Analysis

Question 6. How does the number of filtering rounds
impact the fidelity of NeuralMark?

To evaluate the impact of filtering rounds on NeuralMark’s fi-
delity, we conduct experiments with 6 and 8 filters, compared to
the default 4 filters. Table 8 presents the impact of watermark em-
bedding on the model performance across distinct filtering rounds.

The results demonstrate that NeuralMark, even with varying filter-
ing rounds, has a minimal effect on the model performance while
successfully embedding watermarks.

Table 8: Comparison of classification accuracy (%) with vari-
ous distinct filter rounds on CIFAR-10 and CIFAR-100 using
ResNet-18. Watermark detection rates are omitted as they
all reach 100%.

Dataset 4 Filters 6 Filters 8 Filters

CIFAR-10 94.79 94.74 94.88
CIFAR-100 76.74 75.59 76.16

Question 7. How does the number of filtering rounds
influence the robustness of NeuralMark?

To assess the influence of the number of filtering rounds on
NeuralMark’s robustness against attacks, we conduct experiments
with 6 and 8 filters, compared to the default 4 filters. We omit
forging attacks, as the hashed watermark filter is resilient to them.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

CCS ’25, October 13-17, 2025, Taipei, Taiwan Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 9: Comparison of resistance to overwriting attacks at various trade-off hyper-parameters (𝜆) and learning rates (𝜂)
with distinct filtering rounds using ResNet-18. Values (%) inside and outside the bracket are watermark detection rate and
classification accuracy, respectively.

Overwriting 𝜆 4 Filters 6 Filters 8 Filters 𝜂 4 Filters 6 Filters 8 Filters

CIFAR-100
to

CIFAR-10

1 93.65 (100) 93.13(100) 93.40(100) 0.001 93.65 (100) 93.13(100) 93.40(100)
10 93.44 (100) 93.06(100) 93.41(100) 0.005 91.76 (99.60) 92.10(100) 91.62(100)
50 93.46 (100) 93.06(100) 93.54(100) 0.01 91.58 (92.18) 91.64(94.92) 90.48(89.84)
100 93.53 (100) 92.88(100) 92.99(100) 0.1 75.2 (50.78) 75.84(58.2) 74.54(51.56)
1000 93.09 (100) 93.03(100) 93.39(100) 1 10.00 (44.53) 10.00(47.26) 10.00(50.39)

CIFAR-10
to

CIFAR-100

1 71.78 (100) 71.69(100) 72.63(100) 0.001 71.78 (100) 71.69(100) 72.63(100)
10 72.6 (100) 72.06(100) 72.81(100) 0.005 71.04 (99.60) 70.65(100) 71.46(100)
50 72.73 (100) 71.85(100) 72.85(100) 0.01 69.14 (96.48) 69.47(97.26) 67.88(95.70)
100 71.49 (100) 71.88(100) 72.00(100) 0.1 51.88 (60.54) 55.18(62.10) 50.36(55.07)
1000 71.81 (100) 72.22(100) 72.39(100) 1 1.00 (44.53) 1.00(47.26) 1.00(50.39)

Overwriting Attacks. Table 9 lists the results of overwriting
attacks across distinct filtering rounds. From the results, we find
that when the number of filtering rounds is set to 6, NeuralMark
exhibits superior robustness compared to 4 and 8 filter rounds.
Specifically, at 𝜂 = 0.01, the original watermark detection rates
for 4, 6, and 8 filter rounds on the CIFAR-100 to CIFAR-10 task are
92.18%, 94.92%, and 89.84%, respectively. Those results indicate that
increasing the number of filtering rounds can enhance robustness
against overwriting attacks to a certain extent. However, when
the number of filtering rounds exceeds a certain threshold, the
robustness may be slightly compromised due to the reduction in
the number of parameters.

Fine-tuning Attacks. Table 10 reports the results of fine-tuning
attacks across distinct filtering rounds. We can observe that Neu-
ralMark maintains a watermark detection rate of 100% across all
filtering rounds, with negligible impact on the model performance.

Table 10: Comparison of resistance to fine-tuning attacks
with distinct filter rounds using ResNet-18. Watermark de-
tection rates are omitted as they all reach 100%.

Fine-tuning Clean 4 Filters 6 Filters 8 Filters

CIFAR-100 to CIFAR-10 93.21 93.74 93.01 93.55
CIFAR-10 to CIFAR-100 72.17 71.67 72.68 72.27

Pruning Attacks. Figure 5 shows the results of pruning attacks
on the CIFAR-10 and CIFAR-100 datasets using ResNet-18 across
different filtering rounds. As can be seen, as the number of filtering
rounds increases, the robustness of NeuralMark in resisting pruning
attacks exhibits a slight decline. One reason is that increasing the
number of filter rounds reduces the number of filtered parameters,
leading to a smaller average pooling window size, which affects the
robustness against pruning attacks.

Question 8. How does the hashed watermark filter
affect the overlap rate between the model owner and
the adversary?

To analyze the effect of the hashed watermark filter on the over-
lap rate between the model owner and the adversary, we generate

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, 4 Filters
Watermark, 4 Filters
Model, 6 Filters
Watermark, 6 Filters
Model, 8 Filters
Watermark, 8 Filters

(a) CIFAR-10

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, 4 Filters
Watermark, 4 Filters
Model, 6 Filters
Watermark, 6 Filters
Model, 8 Filters
Watermark, 8 Filters

(b) CIFAR-100

Figure 5: Comparison of resistance to pruning attacks with
distinct filter rounds on CIFAR-10 and CIFAR-100 using
ResNet-18 at various pruning ratios.

five counterfeit watermarks and calculate the overlap ratio between
the parameters filtered by those and the original watermark. As
shown in Figure 6, the overlap rate decreases towards zero with
more filtering rounds, indicating that watermark filtering enhances
the confidentiality of the watermarked parameters.

0 1 2 3 4 5
Filter Round

0

20

40

60

80

100

O
ve

rla
p

R
at

io
 (%

)

Counterfeit Watermark 1
Counterfeit Watermark 2
Counterfeit Watermark 3
Counterfeit Watermark 4
Counterfeit Watermark 5

Figure 6: Comparison of parameter overlap ratio with differ-
ent filter rounds on CIFAR-100 using ResNet-18.

6.5 Additional Analysis

Question 9. How does NeuralMark affect the parame-
ter distribution?

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Hashed Watermark as a Filter: Boosting Robustness of Weight-based Neural-Network Watermarking CCS ’25, October 13-17, 2025, Taipei, Taiwan

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0.2 0.1 0.0 0.1 0.2
Value

0

2

4

6

8

Fr
eq

ue
nc

y

1e 3

NeuralMark
Clean

(a) AlexNet

0.08 0.04 0.00 0.04 0.08
Value

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y

1e 2

NeuralMark
Clean

(b) ResNet-18

0.04 0.02 0.00 0.02 0.04
Value

0.00

0.75

1.50

2.25

3.00

Fr
eq

ue
nc

y

1e 3

NeuralMark
Clean

(c) ResNet-34

0.004 0.002 0.000 0.002 0.004
Value

0.00

0.75

1.50

2.25

3.00

Fr
eq

ue
nc

y

1e 2

NeuralMark
Clean

(d) ViT-B/16

0.010 0.005 0.000 0.005 0.010
Value

0.00

1.25

2.50

3.75

5.00

Fr
eq

ue
nc

y

1e 2

NeuralMark
Clean

(e) VGG-16

0.02 0.01 0.00 0.01 0.02
Value

0.0

0.3

0.6

0.9

1.2

Fr
eq

ue
nc

y

1e 2

NeuralMark
Clean

(f) MobileNet-V3-L

0.02 0.01 0.00 0.01 0.02
Value

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y

1e 2

NeuralMark
Clean

(g) GoogLeNet

0.016 0.008 0.000 0.008 0.016
Value

0.0

0.6

1.2

1.8

2.4

Fr
eq

ue
nc

y

1e 2

NeuralMark
Clean

(h) Swin-V2-B

Figure 7: Comparison of parameter distributions on CIFAR-100 with distinct architectures.

0 40 80 120 160 200
Epochs

23

32

41

50

59

68

A
cc

ur
ac

y
(%

)

NeuralMark
Clean

(a) AlexNet

0 40 80 120 160 200
Epochs

15

27

39

51

63

75

A
cc

ur
ac

y
(%

)

NeuralMark
Clean

(b) ResNet-18

0 40 80 120 160 200
Epochs

10

24

38

52

66

80

A
cc

ur
ac

y
(%

)

NeuralMark
Clean

(c) ResNet-34

0 40 80 120 160 200
Epochs

10

16

22

28

34

40

A
cc

ur
ac

y
(%

)
NeuralMark
Clean

(d) ViT-B/16

0 40 80 120 160 200
Epochs

5

18

31

44

57

70

A
cc

ur
ac

y
(%

)

NeuralMark
Clean

(e) VGG-16

0 40 80 120 160 200
Epochs

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

NeuralMark
Clean

(f) MobileNet-V3-L

0 40 80 120 160 200
Epochs

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

NeuralMark
Clean

(g) GoogLeNet

0 40 80 120 160 200
Epochs

5

15

25

35

45

55

A
cc

ur
ac

y
(%

)

NeuralMark
Clean

(h) Swin-V2-B

Figure 8: Comparison of model performance convergence across distinct architectures on CIFAR-100.

To assess the influence of NeuralMark on the parameter distribu-
tion, Figure 7 present the parameter distributions on the CIFAR-100
dataset with various architectures. As can be seen, the parameter
distributions of Clean and NeuralMark are nearly indistinguish-
able. Thus, it is challenging for adversaries to detect the embedded
watermarks within the model.

Question 10. How does NeuralMark influence the per-
formance convergence?

To examine the impact of NeuralMark on model performance
convergence, Figure 8 show the results on the CIFAR-100 dataset
with various architectures. We find that the performance curves of

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

CCS ’25, October 13-17, 2025, Taipei, Taiwan Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 11: Comparison of the effects of average pooling on resistance to fine-tuning and pruning attacks using ResNet-18. Values
(%) inside and outside the bracket are watermark detection rate and classification accuracy, respectively.

Method
CIFAR-100 to CIFAR-10 Fine-tuning (Learning Rate) CIFAR-100 Pruning (Pruning Ratio)

0.001 0.005 0.01 40% 60% 80%

NeuralMark (w/o AP) 93.26 (100) 92.20 (100) 90.68 (81.64) 71.82 (90.62) 57.50 (78.51) 16.14 (69.92)
NeuralMark 93.74 (100) 92.25 (100) 91.25 (96.87) 69.86 (100) 43.88 (99.21) 9.85 (99.21)

Table 12: Comparison of average time cost (in seconds) on CIFAR-100 using ResNet-18. Here, 𝑅 is the number of filtering rounds.

Method Clean NeuralMark
(𝑅 = 1)

NeuralMark
(𝑅 = 2)

NeuralMark
(𝑅 = 3)

NeuralMark
(𝑅 = 4) VanillaMark GreedyMark VoteMark

Time (s) 23.60 24.49 24.94 25.01 25.19 24.34 47.43 35.17

Clean and NeuralMark exhibit a similar trend of change and are
closely aligned, indicating that NeuralMark does not negatively
affect the convergence of model performance.

Question 11. How does average pooling impact Neu-
ralMark?

To verify the efficacy of average pooling, we compare Neural-
Mark with its variant without average pooling, i.e, NeuralMark w/o
AP. As shown in Table 11, both versions resist fine-tuning attacks
at lower learning rates. However, at a learning rate of 0.01, the
detection rate for NeuralMark (w/o AP) drops to 81.64%, below the
security boundary, while NeuralMark maintains at 96.87%. In addi-
tion, the detection rate of NeuralMark (w/o AP) rapidly declines
with increasing pruning rates, reaching 69.92% at an 80% prun-
ing rate, while NeuralMark achieves 99.21%. Those results confirm
that average pooling enhances resistance to both fine-tuning and
pruning attacks.

Question 12. Does NeuralMark impose a significant
additional computational burden during training?

Table 12 list the average time cost (in seconds) per training epoch
over five epochs on the CIFAR-100 dataset using ResNet-18. Neu-
ralMark’s running time is comparable to that of Clean and Vanilla-
Mark, highlighting the efficiency of NeuralMark. Also, NeuralMark
outperforms GreedyMark in terms of speed due to GreedyMark’s
reliance on costly sorting operations for parameter selection. More-
over, NeuralMark demonstrates significantly faster running times
compared to VoteMark, as it avoids the multiple rounds of water-
mark embedding loss calculations required by VoteMark. Those
results highlight the superior efficiency of NeuralMark.

Question 13. How do the watermark embedding lay-
ers impact the model’s performance?

To investigate the impact of watermark embedding layers on
the model performance, we randomly choose four individual layers
and all layers from ResNet-18 for watermark embedding. Table 13
presents the results on the CIFAR-100 dataset, showing that embed-
ding different layers or all layers does not significantly affect the
model performance.

Table 13: Comparison of classification accuracy (%) on dif-
ferent watermarking layers on CIFAR-100 using ResNet-18.
Here, Layers 1-4 denote randomly chosen layers, while All
Layer refers to all layers.Watermark detection rates are omit-
ted as they all reach 100%.

Watermarking Layer Layer 1 Layer 2 Layer 3 Layer 4 All Layer

Accuracy 76.51 76.68 76.30 76.73 75.86

Question 14. What is the effect of varying the water-
mark length on model performance?

To evaluate the influence of watermark length on the model per-
formance, we set watermark lengths to 64, 128, 256, 512, 1024, and
2048, respectively. Table 14 lists the results on the CIFAR-100 dataset
using ResNet-18, indicating that NeuralMark can achieve a 100%
detection rate with various watermark lengths while preserving
nearly lossless model performance.

Table 14: Comparison of classification accuracy (%) for dis-
tinct watermark lengths on CIFAR-100 using ResNet-18. Wa-
termark detection rates are omitted as they all reach 100%.

Watermark Length 64 128 256 512 1024 2048

Accuracy 75.84 75.90 76.46 76.18 76.51 76.27

7 Conclusion
In this paper, we present NeuralMark, amethod designed to enhance
the robustness of weight-based NNW. At the core of NeuralMark is
a hashedwatermark filter, which utilizes a hash function to generate
an irreversible binary watermark from a secret key, subsequently
employing this watermark as a filter to select model parameters
for embedding. This design cleverly intertwines the embedding
parameters with the hash function, providing robust protection
against both forging and overwriting attacks. Moreover, the incor-
poration of average pooling provides resilience against fine-tuning
and pruning attacks, ensuring comprehensive defense without com-
promising model performance. We provide a theoretical analysis of
NeuralMark’s security boundary. Extensive experiments on various
datasets, architectures, and tasks confirm NeuralMark’s effective-
ness and robustness. In the future, we plan to extend NeuralMark
to more complex scenarios, for instance, federated learning [47].

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Hashed Watermark as a Filter: Boosting Robustness of Weight-based Neural-Network Watermarking CCS ’25, October 13-17, 2025, Taipei, Taiwan

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
2018. Turning your weakness into a strength: Watermarking deep neural net-
works by backdooring. In USENIX Security. 1615–1631.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang
Fan, Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609 (2023).

[4] Mihir Bellare and Phillip Rogaway. 1993. Random oracles are practical: A para-
digm for designing efficient protocols. In CCS. 62–73.

[5] Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, and David
Owen. 2024. The rising costs of training frontier AI models. arXiv preprint
arXiv:2405.21015 (2024).

[6] Alexey Dosovitskiy. 2021. An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR.

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[8] Morris J Dworkin. 2015. SHA-3 standard: Permutation-based hash and
extendable-output functions. (2015).

[9] Lixin Fan, KamWoh Ng, and Chee Seng Chan. 2019. Rethinking deep neural net-
work ownership verification: Embedding passports to defeat ambiguity attacks.
In NeurIPS, Vol. 32.

[10] Lixin Fan, Kam Woh Ng, Chee Seng Chan, and Qiang Yang. 2021. Deepipr: Deep
neural network ownership verification with passports. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 10 (2021), 6122–6139.

[11] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learning generative visual
models from few training examples: An incremental bayesian approach tested
on 101 object categories. In CVPRW. 178–178.

[12] Le Feng and Xinpeng Zhang. 2020. Watermarking neural network with compen-
sation mechanism. In KSEM. 363–375.

[13] Hossein Gholamalinezhad and Hossein Khosravi. 2020. Pooling methods in deep
neural networks, a review. arXiv preprint arXiv:2009.07485 (2020).

[14] Gregory Griffin, Alex Holub, Pietro Perona, et al. 2007. Caltech-256 object
category dataset. Technical Report. Technical Report 7694, California Institute
of Technology Pasadena.

[15] Chaoxiang He, Xiaofan Bai, Xiaojing Ma, Bin Benjamin Zhu, Pingyi Hu, Jiayun
Fu, Hai Jin, and Dongmei Zhang. 2024. Towards Stricter Black-box Integrity
Verification of Deep Neural Network Models. In ACM MM.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[17] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In ICCV. 1314–1324.

[18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In ICLR.

[19] Ju Jia, Yueming Wu, Anran Li, Siqi Ma, and Yang Liu. 2022. Subnetwork-lossless
robust watermarking for hostile theft attacks in deep transfer learning models.
IEEE Transactions on Dependable and Secure Computing (2022).

[20] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of
features from tiny images. Technical Report. Technical report, University of
Toronto.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NeurIPS, Vol. 25.

[22] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS
231N 7, 7 (2015), 3.

[23] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. 2020. Adversarial frontier
stitching for remote neural network watermarking. Neural Computing and
Applications 32, 13 (2020), 9233–9244.

[24] Fangqi Li, Lei Yang, Shilin Wang, and Alan Wee-Chung Liew. 2022. Leverag-
ing Multi-task Learning for Umambiguous and Flexible Deep Neural Network
Watermarking.. In SafeAI@ AAAI.

[25] Fangqi Li, Haodong Zhao, Wei Du, and Shilin Wang. 2024. Revisiting the Infor-
mation Capacity of Neural Network Watermarks: Upper Bound Estimation and
Beyond. In AAAI. 21331–21339.

[26] Peixuan Li, Pengzhou Cheng, Fangqi Li, Wei Du, Haodong Zhao, and Gongshen
Liu. 2023. Plmmark: a secure and robust black-box watermarking framework for
pre-trained language models. In AAAI, Vol. 37. 14991–14999.

[27] Yue Li, Lydia Abady, Hongxia Wang, and Mauro Barni. 2021. A feature-map-
based large-payload DNN watermarking algorithm. In IWDW. 135–148.

[28] Yue Li, Benedetta Tondi, and Mauro Barni. 2021. Spread-transform dither modu-
lation watermarking of deep neural network. Journal of Information Security
and Applications 63 (2021), 103004.

[29] Jian Han Lim, Chee Seng Chan, Kam Woh Ng, Lixin Fan, and Qiang Yang. 2022.
Protect, show, attend and tell: Empowering image captioning models with own-
ership protection. Pattern Recognition 122 (2022), 108285.

[30] Hanwen Liu, Zhenyu Weng, and Yuesheng Zhu. 2021. Watermarking Deep
Neural Networks with Greedy Residuals.. In ICML. 6978–6988.

[31] Hanwen Liu, Zhenyu Weng, Yuesheng Zhu, and Yadong Mu. 2023. Trapdoor
normalization with irreversible ownership verification. In ICML. PMLR, 22177–
22187.

[32] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian,
Hao He, Antong Li, Mengshen He, Zhengliang Liu, et al. 2023. Summary of
chatgpt-related research and perspective towards the future of large language
models. Meta-Radiology (2023), 100017.

[33] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning,
Yue Cao, Zheng Zhang, Li Dong, et al. 2022. Swin transformer v2: Scaling up
capacity and resolution. In CVPR. 12009–12019.

[34] Ilya Loshchilov, Frank Hutter, et al. 2017. Fixing weight decay regularization in
adam. arXiv preprint arXiv:1711.05101 5 (2017).

[35] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. 2022. Sok: How
robust is image classification deep neural network watermarking?. In S&P. IEEE,
787–804.

[36] Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam,
G Sastry, A Askell, S Agarwal, et al. 2020. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165 1 (2020).

[37] Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 2017. The E2E dataset:
New challenges for end-to-end generation. arXiv preprint arXiv:1706.09254
(2017).

[38] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library. In
NeurIPS, Vol. 32.

[39] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[40] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. 2019. Deepsigns:
an end-to-end watermarking framework for protecting the ownership of deep
neural networks. In ASPLOS, Vol. 3.

[41] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional net-
works for large-scale image recognition. In ICLR.

[42] Yuchen Sun, Tianpeng Liu, Panhe Hu, Qing Liao, Shaojing Fu, Nenghai Yu, Deke
Guo, Yongxiang Liu, and Li Liu. 2023. Deep intellectual property protection: A
survey. arXiv preprint arXiv:2304.14613 (2023).

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In CVPR. 1–9.

[44] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.
Embedding watermarks into deep neural networks. In ACM ICMR. 269–277.

[45] Arthur F Webster and Stafford E Tavares. 1985. On the design of S-boxes. In
Eurocrypt. Springer, 523–534.

[46] Mingfu Xue, Yushu Zhang, Jian Wang, and Weiqiang Liu. 2021. Intellectual
property protection for deep learning models: Taxonomy, methods, attacks, and
evaluations. IEEE Transactions on Artificial Intelligence 3, 6 (2021), 908–923.

[47] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine
learning: Concept and applications. ACM Transactions on Intelligent Systems
and Technology 10, 2 (2019), 1–19.

[48] Sergey Zagoruyko. 2016. Wide residual networks. In BMVC.
[49] Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Gang Hua, and Nenghai

Yu. 2020. Passport-aware normalization for deep model protection. In NeurIPS,
Vol. 33. 22619–22628.

[50] Renjie Zhu, Xinpeng Zhang, Mengte Shi, and Zhenjun Tang. 2020. Secure neural
network watermarking protocol against forging attack. EURASIP Journal on
Image and Video Processing 2020 (2020), 1–12.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

CCS ’25, October 13-17, 2025, Taipei, Taiwan Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A Proof for Proposition 5.1
Proposition 5.1. Under the assumption that the hash function pro-
duces uniformly distributed outputs [4], for a model watermarked by
NeuralMark with a watermark tuple {K, b}, where b = H(K), if an
adversary attempts to forge a counterfeit watermark tuple {K′, b′}
such that b′ = H(K′) and K′ ≠ K, then the probability of achieving
a watermark detection rate of at least 𝜌 (i.e., ≥ 𝜌) is upper-bounded
by 1

2𝑛
∑𝑛−⌈𝜌𝑛⌉
𝑖=0

(𝑛
𝑖

)
.

Proof. Since the hash function produces uniformly distributed
outputs, each bit of the counterfeit watermark matches the corre-
sponding bit of the extracted watermark from model parameters
with a probability of 1

2 . The number of matching bits follows a
binomial distribution with parameters 𝑛 and 𝑝 = 1

2 . To achieve a
detection rate of at least 𝜌 , the adversary needs at least ⌈𝜌𝑛⌉ bits
to match out of 𝑛 bits. Thus, the probability of having at least ⌈𝜌𝑛⌉
matching bits is given by

Pr
[
𝑋 ≥ ⌈𝜌𝑛⌉

]
=

𝑛∑︁
𝑖=⌈𝜌𝑛⌉

(
𝑛

𝑖

) (
1
2

)𝑖 (1
2

)𝑛−𝑖
=

1
2𝑛

𝑛∑︁
𝑖=⌈𝜌𝑛⌉

(
𝑛

𝑖

)
=

1
2𝑛

𝑛−⌈𝜌𝑛⌉∑︁
𝑖=0

(
𝑛

𝑖

)
.

(4)

Accordingly, the probability of an adversary forging a counterfeit
watermark that achieves a watermark detection rate of at least 𝜌
(i.e., ≥ 𝜌) is upper-bounded by 1

2𝑛
∑𝑛−⌈𝜌𝑛⌉
𝑖=0

(𝑛
𝑖

)
.

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(a) NeuralMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(b) VanillaMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(c) GreedyMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(d) VoteMark

Figure 9: Comparison of resistance to pruning attacks at var-
ious pruning ratios on CIFAR-100 using AlexNet and ResNet-
18.

B Additional Results of Pruning Attacks
Figure 9-11 provide the results from pruning attacks conducted on
the CIFAR-100, Caltech-101, and Caltech-256 datasets, respectively.
As can be seen, as the pruning ratio increases, the performance of

NeuralMark degrades while the detection rate remains nearly 100%.
This indicates NeuralMark’s robustness against pruning attacks.
Those results collectively suggest NeuralMark exhibits superior
robustness in resisting pruning attacks compared to other methods.

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(a) NeuralMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(b) VanillaMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(c) GreedyMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(d) VoteMark

Figure 10: Comparison of resistance to pruning attacks at
various pruning ratios on Caltech-101 using AlexNet and
ResNet-18.

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(a) NeuralMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(b) VanillaMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(c) GreedyMark

0 20 40 60 80 100
Pruning Ratio (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Model, AlexNet
Watermark, AlexNet
Model, ResNet-18
Watermark, ResNet-18

(d) VoteMark

Figure 11: Comparison of resistance to pruning attacks at
various pruning ratios on Caltech-256 using AlexNet and
ResNet-18.

14

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Problem Formulations
	4.1 Weight-based NNW
	4.2 Threat Model
	4.3 Success Criteria for Threat Model

	5 Methodology
	5.1 Motivation
	5.2 NeuralMark
	5.3 Theoretical Analysis

	6 Experiments
	6.1 Experimental Setup
	6.2 Fidelity Evaluation
	6.3 Robustness Evaluation
	6.4 Hashed Watermark Filter Analysis
	6.5 Additional Analysis

	7 Conclusion
	References
	A Proof for theo:Boundary
	B Additional Results of Pruning Attacks

